Normalized defining polynomial
\( x^{16} + 26 x^{14} - 5 x^{13} + 342 x^{12} - 250 x^{11} + 3133 x^{10} - 3595 x^{9} + 17940 x^{8} - 17865 x^{7} + 46967 x^{6} - 2305 x^{5} + 8932 x^{4} + 143460 x^{3} - 66026 x^{2} - 2395 x + 226391 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1170088580305670166015625=5^{14}\cdot 61^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{22} a^{12} + \frac{2}{11} a^{11} + \frac{1}{11} a^{10} + \frac{5}{11} a^{9} + \frac{7}{22} a^{8} + \frac{7}{22} a^{7} + \frac{7}{22} a^{6} + \frac{1}{22} a^{5} - \frac{4}{11} a^{4} + \frac{9}{22} a^{3} - \frac{3}{11} a^{2} - \frac{5}{22} a - \frac{1}{2}$, $\frac{1}{22} a^{13} - \frac{3}{22} a^{11} + \frac{1}{11} a^{10} + \frac{1}{22} a^{8} + \frac{1}{22} a^{7} + \frac{3}{11} a^{6} - \frac{1}{22} a^{5} - \frac{3}{22} a^{4} - \frac{9}{22} a^{3} + \frac{4}{11} a^{2} - \frac{1}{11} a$, $\frac{1}{768370702} a^{14} + \frac{8706564}{384185351} a^{13} - \frac{1232189}{69851882} a^{12} + \frac{182337841}{768370702} a^{11} - \frac{14579203}{384185351} a^{10} - \frac{76680726}{384185351} a^{9} + \frac{57242049}{768370702} a^{8} + \frac{104957441}{384185351} a^{7} - \frac{149248904}{384185351} a^{6} + \frac{139500154}{384185351} a^{5} + \frac{285887009}{768370702} a^{4} - \frac{148480217}{768370702} a^{3} + \frac{249095421}{768370702} a^{2} + \frac{346042855}{768370702} a - \frac{8444263}{34925941}$, $\frac{1}{3162911814253767330932122} a^{15} + \frac{1696942437486721}{3162911814253767330932122} a^{14} + \frac{63607208415355378470365}{3162911814253767330932122} a^{13} + \frac{16102546638009577091166}{1581455907126883665466061} a^{12} - \frac{8602438995976109441491}{287537437659433393721102} a^{11} + \frac{726980787571188827477551}{3162911814253767330932122} a^{10} + \frac{802732115866424970680891}{3162911814253767330932122} a^{9} - \frac{280385425707819557758703}{1581455907126883665466061} a^{8} - \frac{228019321179664059533544}{1581455907126883665466061} a^{7} - \frac{375801498536611688341297}{1581455907126883665466061} a^{6} + \frac{366558860983847737986463}{1581455907126883665466061} a^{5} + \frac{1467189841576788506746489}{3162911814253767330932122} a^{4} + \frac{355156187621505720201989}{1581455907126883665466061} a^{3} + \frac{667663605440361778271941}{3162911814253767330932122} a^{2} - \frac{643464112802818700816039}{1581455907126883665466061} a + \frac{4949526599744666726797}{26139767059948490338282}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{127758556963096127}{38572095295777650377221} a^{15} + \frac{8742703357063022661}{77144190591555300754442} a^{14} + \frac{1626245520566490017}{38572095295777650377221} a^{13} + \frac{77879039234505411678}{38572095295777650377221} a^{12} - \frac{1008373918376359732}{3506554117797968216111} a^{11} + \frac{1663536769976838009925}{77144190591555300754442} a^{10} - \frac{1708816843673902063993}{77144190591555300754442} a^{9} + \frac{13195510246337361419599}{77144190591555300754442} a^{8} - \frac{17244281908694853411363}{77144190591555300754442} a^{7} + \frac{24667222981520740429647}{38572095295777650377221} a^{6} - \frac{22816683097729358356841}{77144190591555300754442} a^{5} + \frac{9554832339830262613947}{38572095295777650377221} a^{4} + \frac{188128886625705554547187}{77144190591555300754442} a^{3} - \frac{170112589272049483971045}{77144190591555300754442} a^{2} + \frac{6615479372678235580055}{38572095295777650377221} a + \frac{1406877758611101409057}{318777647072542565101} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 628180.26955 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T157):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.17732890625.2 x2, 8.0.58140625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 61 | Data not computed | ||||||