Normalized defining polynomial
\( x^{16} - 6 x^{15} + 25 x^{14} - 70 x^{13} + 158 x^{12} - 284 x^{11} + 451 x^{10} - 500 x^{9} + 389 x^{8} - 168 x^{7} + 57 x^{6} - 8 x^{5} + 52 x^{4} - 22 x^{3} + 7 x^{2} - 2 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(116985856000000000000=2^{24}\cdot 5^{12}\cdot 13^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{13} - \frac{2}{9} a^{12} - \frac{4}{9} a^{11} + \frac{2}{9} a^{10} + \frac{1}{3} a^{9} - \frac{1}{9} a^{8} - \frac{4}{9} a^{7} + \frac{4}{9} a^{6} + \frac{1}{3} a^{5} + \frac{2}{9} a^{4} - \frac{1}{9} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{2}{9}$, $\frac{1}{143870164595037} a^{15} + \frac{1189215732094}{143870164595037} a^{14} - \frac{4311249501457}{143870164595037} a^{13} + \frac{4955500513609}{143870164595037} a^{12} + \frac{21327084478652}{47956721531679} a^{11} - \frac{47842379893673}{143870164595037} a^{10} + \frac{36677013791990}{143870164595037} a^{9} - \frac{1714872001615}{47956721531679} a^{8} - \frac{2330330932819}{143870164595037} a^{7} + \frac{71900849007818}{143870164595037} a^{6} + \frac{54884013380990}{143870164595037} a^{5} + \frac{6988625460107}{47956721531679} a^{4} - \frac{55003018431335}{143870164595037} a^{3} - \frac{676711766489}{47956721531679} a^{2} + \frac{63787337197750}{143870164595037} a + \frac{17387804495342}{143870164595037}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{282715256680}{5328524614631} a^{15} - \frac{2169166893032}{5328524614631} a^{14} + \frac{28871542548140}{15985573843893} a^{13} - \frac{29968090086755}{5328524614631} a^{12} + \frac{212992205280056}{15985573843893} a^{11} - \frac{136379335786298}{5328524614631} a^{10} + \frac{660876531530344}{15985573843893} a^{9} - \frac{843936061552007}{15985573843893} a^{8} + \frac{694042242691136}{15985573843893} a^{7} - \frac{109829918363108}{5328524614631} a^{6} + \frac{22765881644864}{15985573843893} a^{5} + \frac{17698919141}{15985573843893} a^{4} + \frac{14151027229184}{5328524614631} a^{3} - \frac{121622039815238}{15985573843893} a^{2} + \frac{4237808944036}{15985573843893} a + \frac{262409724883}{15985573843893} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3710.59482488 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times D_4$ (as 16T19):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_4 \times D_4$ |
| Character table for $C_4 \times D_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), 4.0.8000.2, \(\Q(\zeta_{5})\), 4.0.104000.2, \(\Q(\sqrt{2}, \sqrt{5})\), 4.0.104000.4, 8.0.10816000000.5, 8.0.64000000.2, 8.8.432640000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 5 | Data not computed | ||||||
| $13$ | 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |