Normalized defining polynomial
\( x^{16} + 124 x^{14} + 5985 x^{12} + 143756 x^{10} + 1842554 x^{8} + 12966476 x^{6} + 59620320 x^{4} + 130137424 x^{2} + 542004961 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(116841939847873560576000000000000=2^{32}\cdot 3^{8}\cdot 5^{12}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $100.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2280=2^{3}\cdot 3\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2280}(1,·)$, $\chi_{2280}(2051,·)$, $\chi_{2280}(1217,·)$, $\chi_{2280}(1673,·)$, $\chi_{2280}(77,·)$, $\chi_{2280}(911,·)$, $\chi_{2280}(1747,·)$, $\chi_{2280}(533,·)$, $\chi_{2280}(1369,·)$, $\chi_{2280}(2203,·)$, $\chi_{2280}(607,·)$, $\chi_{2280}(229,·)$, $\chi_{2280}(1063,·)$, $\chi_{2280}(2279,·)$, $\chi_{2280}(1139,·)$, $\chi_{2280}(1141,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{69361} a^{10} + \frac{90}{69361} a^{8} + \frac{2835}{69361} a^{6} - \frac{32911}{69361} a^{4} + \frac{25303}{69361} a^{2} + \frac{9982}{69361}$, $\frac{1}{69361} a^{11} + \frac{90}{69361} a^{9} + \frac{2835}{69361} a^{7} - \frac{32911}{69361} a^{5} + \frac{25303}{69361} a^{3} + \frac{9982}{69361} a$, $\frac{1}{22126159} a^{12} + \frac{108}{22126159} a^{10} - \frac{4365288}{22126159} a^{8} - \frac{3658014}{22126159} a^{6} - \frac{385748}{2011469} a^{4} + \frac{4419013}{22126159} a^{2} + \frac{6491527}{22126159}$, $\frac{1}{515119107679} a^{13} + \frac{2404411}{515119107679} a^{11} + \frac{1403432405}{3705892861} a^{9} - \frac{84125972499}{515119107679} a^{7} - \frac{3836699990}{46829009789} a^{5} - \frac{4696663408}{16616745409} a^{3} + \frac{162914270275}{515119107679} a$, $\frac{1}{26086146731972239} a^{14} - \frac{422101343}{26086146731972239} a^{12} - \frac{12045369782}{2371467884724749} a^{10} - \frac{296192805614724}{2371467884724749} a^{8} - \frac{5263003784854008}{26086146731972239} a^{6} + \frac{176856214989732}{841488604257169} a^{4} + \frac{7768972037597176}{26086146731972239} a^{2} - \frac{122998995798}{1120490817919}$, $\frac{1}{26086146731972239} a^{15} - \frac{8608}{26086146731972239} a^{13} + \frac{54551720381}{26086146731972239} a^{11} - \frac{3573041797383886}{26086146731972239} a^{9} + \frac{7916141346187865}{26086146731972239} a^{7} + \frac{12882785349638781}{26086146731972239} a^{5} + \frac{487186166211750}{2371467884724749} a^{3} - \frac{8300572295044549}{26086146731972239} a$
Class group and class number
$C_{4}\times C_{4}\times C_{8}\times C_{16}\times C_{80}$, which has order $163840$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16694.393243512957 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $19$ | 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |