Normalized defining polynomial
\( x^{16} - 8 x^{15} + 20 x^{14} + 296 x^{12} - 2140 x^{11} + 6826 x^{10} - 13560 x^{9} + 60301 x^{8} - 185100 x^{7} + 729070 x^{6} - 1570952 x^{5} + 5955986 x^{4} - 9495240 x^{3} + 31551500 x^{2} - 27037000 x + 79747180 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(116841939847873560576000000000000=2^{32}\cdot 3^{8}\cdot 5^{12}\cdot 19^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $100.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2280=2^{3}\cdot 3\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2280}(1,·)$, $\chi_{2280}(2051,·)$, $\chi_{2280}(77,·)$, $\chi_{2280}(721,·)$, $\chi_{2280}(533,·)$, $\chi_{2280}(343,·)$, $\chi_{2280}(1369,·)$, $\chi_{2280}(797,·)$, $\chi_{2280}(607,·)$, $\chi_{2280}(419,·)$, $\chi_{2280}(1253,·)$, $\chi_{2280}(1063,·)$, $\chi_{2280}(2089,·)$, $\chi_{2280}(1139,·)$, $\chi_{2280}(1331,·)$, $\chi_{2280}(2167,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{18} a^{8} + \frac{1}{9} a^{7} + \frac{1}{9} a^{6} + \frac{1}{9} a^{5} + \frac{1}{18} a^{4} - \frac{1}{9} a^{3} + \frac{4}{9} a^{2} - \frac{4}{9} a - \frac{4}{9}$, $\frac{1}{18} a^{9} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{1}{6} a^{5} + \frac{1}{9} a^{4} + \frac{1}{3} a^{2} + \frac{1}{9} a + \frac{2}{9}$, $\frac{1}{18} a^{10} + \frac{1}{9} a^{7} + \frac{1}{18} a^{6} + \frac{1}{9} a^{4} - \frac{2}{9} a^{3} - \frac{1}{3} a + \frac{4}{9}$, $\frac{1}{18} a^{11} - \frac{1}{6} a^{7} + \frac{1}{9} a^{6} - \frac{1}{9} a^{5} + \frac{2}{9} a^{3} + \frac{4}{9} a^{2} - \frac{1}{9}$, $\frac{1}{54} a^{12} + \frac{1}{54} a^{9} - \frac{2}{27} a^{6} - \frac{1}{6} a^{5} - \frac{1}{6} a^{4} - \frac{5}{27} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{5}{27}$, $\frac{1}{3186} a^{13} + \frac{23}{3186} a^{12} + \frac{4}{531} a^{11} + \frac{14}{1593} a^{10} - \frac{49}{3186} a^{9} + \frac{2}{177} a^{8} + \frac{223}{1593} a^{7} + \frac{131}{1593} a^{6} - \frac{56}{531} a^{5} + \frac{125}{3186} a^{4} + \frac{239}{1593} a^{3} + \frac{239}{531} a^{2} - \frac{382}{1593} a + \frac{163}{1593}$, $\frac{1}{1235054911551800526} a^{14} - \frac{7}{1235054911551800526} a^{13} + \frac{528501108810898}{205842485258633421} a^{12} - \frac{19026039917192237}{1235054911551800526} a^{11} + \frac{14828825883706981}{617527455775900263} a^{10} + \frac{8705702356841843}{411684970517266842} a^{9} - \frac{11409367606142665}{1235054911551800526} a^{8} + \frac{91333359429570007}{1235054911551800526} a^{7} - \frac{57879626723211367}{411684970517266842} a^{6} - \frac{48649642242585728}{617527455775900263} a^{5} + \frac{29670415998332809}{1235054911551800526} a^{4} - \frac{31390258961947592}{68614161752877807} a^{3} + \frac{265962742340370188}{617527455775900263} a^{2} + \frac{1309518710963975}{10466567047049157} a - \frac{18024427282348525}{205842485258633421}$, $\frac{1}{45868704360122319735114} a^{15} + \frac{9281}{22934352180061159867557} a^{14} - \frac{350852716758161429}{4169882214556574521374} a^{13} + \frac{83969977288591519841}{45868704360122319735114} a^{12} - \frac{48337497298570131230}{2084941107278287260687} a^{11} + \frac{358054980548844616211}{45868704360122319735114} a^{10} - \frac{344444251761917537953}{15289568120040773245038} a^{9} - \frac{439401928617729225679}{45868704360122319735114} a^{8} + \frac{201693953333753441297}{4169882214556574521374} a^{7} + \frac{5999566137248856377923}{45868704360122319735114} a^{6} + \frac{661307087926950303130}{22934352180061159867557} a^{5} - \frac{3700577026162419593296}{22934352180061159867557} a^{4} - \frac{972417638034294998873}{7644784060020386622519} a^{3} - \frac{473315390469685439209}{22934352180061159867557} a^{2} + \frac{5458509672430439888305}{22934352180061159867557} a + \frac{3048021790260040891106}{22934352180061159867557}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{16}\times C_{80}$, which has order $163840$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 58630.77118534252 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.1 | $x^{8} + 6 x^{6} + 2 x^{4} + 4 x^{2} + 8 x + 12$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ |
| 2.8.16.1 | $x^{8} + 6 x^{6} + 2 x^{4} + 4 x^{2} + 8 x + 12$ | $4$ | $2$ | $16$ | $C_4\times C_2$ | $[2, 3]^{2}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |