Normalized defining polynomial
\( x^{16} - 2 x^{15} - 11 x^{14} + 7 x^{13} + 29 x^{12} + 139 x^{11} + 527 x^{10} - 2880 x^{9} - 943 x^{8} + 12374 x^{7} - 8494 x^{6} - 7705 x^{5} + 21841 x^{4} - 15244 x^{3} + 19216 x^{2} - 8640 x + 2304 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11654783511381160590876241=13^{12}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{6} a$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{6} + \frac{1}{3} a^{3} - \frac{1}{2} a$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{7} + \frac{1}{3} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{13} - \frac{1}{12} a^{11} - \frac{1}{12} a^{10} - \frac{1}{12} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{12} a^{5} - \frac{1}{6} a^{3} - \frac{5}{12} a^{2} + \frac{1}{12} a$, $\frac{1}{56304} a^{14} - \frac{185}{28152} a^{13} + \frac{3637}{56304} a^{12} + \frac{1543}{56304} a^{11} + \frac{1957}{56304} a^{10} + \frac{499}{6256} a^{9} + \frac{6349}{18768} a^{8} - \frac{749}{2346} a^{7} + \frac{10001}{56304} a^{6} - \frac{12925}{28152} a^{5} - \frac{4091}{28152} a^{4} + \frac{3455}{56304} a^{3} - \frac{6319}{56304} a^{2} - \frac{839}{4692} a - \frac{11}{391}$, $\frac{1}{2991652927678511125699454784} a^{15} + \frac{8155953874303483945139}{1495826463839255562849727392} a^{14} + \frac{4443453046180187048666083}{130071866420804831552150208} a^{13} - \frac{69740037440936268036143035}{997217642559503708566484928} a^{12} + \frac{20658435794145070350890669}{332405880853167902855494976} a^{11} - \frac{151049934593576687596332013}{2991652927678511125699454784} a^{10} + \frac{29735063463402667470658381}{997217642559503708566484928} a^{9} - \frac{1784559140484513506490523}{124652205319937963570810616} a^{8} + \frac{125429063353659818976073937}{2991652927678511125699454784} a^{7} + \frac{446659126009109866757976415}{1495826463839255562849727392} a^{6} + \frac{576287822915606746712558129}{1495826463839255562849727392} a^{5} - \frac{176688113444599030616038627}{997217642559503708566484928} a^{4} + \frac{52158984104763695007051297}{332405880853167902855494976} a^{3} - \frac{187438349541053826465245825}{747913231919627781424863696} a^{2} + \frac{26700548291156918299474721}{62326102659968981785405308} a - \frac{1206212104451845523084676}{5193841888330748482117109}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 723660.392097 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:C_4$ (as 16T10):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_2^2 : C_4$ |
| Character table for $C_2^2 : C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $29$ | 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |