Normalized defining polynomial
\( x^{16} - 12 x^{14} + 24 x^{12} + 208 x^{10} - 627 x^{8} - 2108 x^{6} + 6600 x^{4} + 27768 x^{2} + 31684 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11638459724246712057856=2^{44}\cdot 17^{4}\cdot 89^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a$, $\frac{1}{5796} a^{12} + \frac{221}{2898} a^{10} + \frac{11}{42} a^{8} + \frac{16}{483} a^{6} + \frac{201}{644} a^{4} + \frac{1271}{2898} a^{2} - \frac{877}{2898}$, $\frac{1}{11592} a^{13} - \frac{745}{5796} a^{11} - \frac{1}{6} a^{10} - \frac{31}{84} a^{9} + \frac{8}{483} a^{7} + \frac{201}{1288} a^{5} + \frac{1271}{5796} a^{3} - \frac{1}{2} a^{2} - \frac{1843}{5796} a + \frac{1}{3}$, $\frac{1}{807288638184} a^{14} - \frac{2462498}{100911079773} a^{12} - \frac{1}{6} a^{11} - \frac{3679141885}{403644319092} a^{10} + \frac{159658553}{1067842114} a^{8} - \frac{64865829269}{269096212728} a^{6} - \frac{25906291366}{100911079773} a^{4} - \frac{1}{2} a^{3} - \frac{79683208721}{403644319092} a^{2} + \frac{1}{3} a + \frac{223669661}{2267664714}$, $\frac{1}{807288638184} a^{15} - \frac{2462498}{100911079773} a^{13} - \frac{3679141885}{403644319092} a^{11} + \frac{159658553}{1067842114} a^{9} - \frac{64865829269}{269096212728} a^{7} - \frac{25906291366}{100911079773} a^{5} - \frac{79683208721}{403644319092} a^{3} + \frac{223669661}{2267664714} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{20303}{1695984534} a^{14} - \frac{7731943}{23743783476} a^{12} + \frac{25018769}{11871891738} a^{10} + \frac{1086383}{1319099082} a^{8} - \frac{188925535}{3957297246} a^{6} + \frac{2809975057}{23743783476} a^{4} + \frac{830707765}{11871891738} a^{2} - \frac{70618445}{133392042} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 141752.454588 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n799 are not computed |
| Character table for t16n799 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), 4.4.4352.1, 4.0.1088.2, \(\Q(\zeta_{8})\), 8.0.18939904.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.22 | $x^{8} + 4 x^{4} + 36$ | $8$ | $1$ | $24$ | $D_4\times C_2$ | $[2, 3, 4]^{2}$ |
| 2.8.20.55 | $x^{8} + 4 x^{6} + 4 x^{5} + 6 x^{4} + 2$ | $8$ | $1$ | $20$ | $Q_8:C_2$ | $[2, 3, 3]^{2}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89 | Data not computed | ||||||