Normalized defining polynomial
\( x^{16} - 4 x^{15} - 4 x^{14} + 28 x^{13} + 34 x^{12} - 152 x^{11} - 304 x^{10} + 584 x^{9} + 1675 x^{8} - 476 x^{7} - 5164 x^{6} - 4340 x^{5} + 4602 x^{4} + 10928 x^{3} + 8728 x^{2} + 3400 x + 578 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11638459724246712057856=2^{44}\cdot 17^{4}\cdot 89^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{7} a^{13} - \frac{2}{7} a^{12} - \frac{3}{7} a^{10} + \frac{2}{7} a^{9} + \frac{3}{7} a^{8} + \frac{1}{7} a^{7} - \frac{1}{7} a^{6} - \frac{2}{7} a^{5} + \frac{1}{7} a^{4} + \frac{3}{7} a^{3} + \frac{2}{7} a^{2} + \frac{2}{7} a - \frac{3}{7}$, $\frac{1}{49} a^{14} + \frac{2}{49} a^{13} - \frac{1}{49} a^{12} + \frac{4}{49} a^{11} + \frac{18}{49} a^{10} + \frac{18}{49} a^{9} - \frac{15}{49} a^{8} - \frac{11}{49} a^{7} - \frac{20}{49} a^{6} - \frac{1}{7} a^{5} + \frac{3}{7} a^{4} + \frac{2}{7} a^{3} - \frac{11}{49} a^{2} + \frac{5}{49} a - \frac{12}{49}$, $\frac{1}{483905981189415911749} a^{15} + \frac{26457083853594853}{5437145856060852941} a^{14} - \frac{3572483867063327812}{69129425884202273107} a^{13} + \frac{16949511065086199804}{69129425884202273107} a^{12} + \frac{82017640681867249}{28465057717024465397} a^{11} - \frac{118335188752759122929}{483905981189415911749} a^{10} + \frac{173017440585988759629}{483905981189415911749} a^{9} - \frac{9716646182495036198}{483905981189415911749} a^{8} - \frac{192855717058405506701}{483905981189415911749} a^{7} + \frac{2779561761197332908}{28465057717024465397} a^{6} + \frac{26188806621746750372}{69129425884202273107} a^{5} - \frac{586055948891079111}{9875632269171753301} a^{4} - \frac{137237226512466530447}{483905981189415911749} a^{3} - \frac{191447153305758966046}{483905981189415911749} a^{2} + \frac{152167897571805166416}{483905981189415911749} a - \frac{6993786818755609448}{28465057717024465397}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{12659250492361562}{580919545245397253} a^{15} - \frac{4493038252648755}{45690301311435739} a^{14} - \frac{167481261929052849}{4066436816717780771} a^{13} + \frac{2659709190111965772}{4066436816717780771} a^{12} + \frac{1617501937168090006}{4066436816717780771} a^{11} - \frac{14780991900868041249}{4066436816717780771} a^{10} - \frac{19416449909576990566}{4066436816717780771} a^{9} + \frac{64607634875738633361}{4066436816717780771} a^{8} + \frac{117420069748751163494}{4066436816717780771} a^{7} - \frac{115922129905132979712}{4066436816717780771} a^{6} - \frac{59021711575544727969}{580919545245397253} a^{5} - \frac{20526172641790502826}{580919545245397253} a^{4} + \frac{77789271972274543622}{580919545245397253} a^{3} + \frac{685759266485703480009}{4066436816717780771} a^{2} + \frac{324327095702025334668}{4066436816717780771} a + \frac{54585790554706814199}{4066436816717780771} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 320264.414107 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n799 are not computed |
| Character table for t16n799 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), 4.0.1088.2, 4.4.4352.1, \(\Q(\zeta_{8})\), 8.0.18939904.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.22 | $x^{8} + 4 x^{4} + 36$ | $8$ | $1$ | $24$ | $D_4\times C_2$ | $[2, 3, 4]^{2}$ |
| 2.8.20.55 | $x^{8} + 4 x^{6} + 4 x^{5} + 6 x^{4} + 2$ | $8$ | $1$ | $20$ | $Q_8:C_2$ | $[2, 3, 3]^{2}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 89 | Data not computed | ||||||