Normalized defining polynomial
\( x^{16} - 2 x^{15} + 4 x^{14} - 42 x^{13} + 220 x^{12} - 661 x^{11} + 217 x^{10} + 1555 x^{9} + 46394 x^{8} + 12272 x^{7} + 262416 x^{6} + 167323 x^{5} + 1006059 x^{4} + 255478 x^{3} + 2190191 x^{2} + 762645 x + 2941783 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1162337480711184271576898233831313=17^{15}\cdot 67^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $116.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3263} a^{14} - \frac{1608}{3263} a^{13} - \frac{830}{3263} a^{12} - \frac{641}{3263} a^{11} - \frac{1208}{3263} a^{10} + \frac{528}{3263} a^{9} - \frac{658}{3263} a^{8} + \frac{1351}{3263} a^{7} - \frac{659}{3263} a^{6} - \frac{184}{3263} a^{5} + \frac{636}{3263} a^{4} + \frac{228}{3263} a^{3} - \frac{827}{3263} a^{2} + \frac{604}{3263} a - \frac{14}{251}$, $\frac{1}{9708851429195963609746063720323616927084070029} a^{15} + \frac{199074451254129075160116514222375269898433}{9708851429195963609746063720323616927084070029} a^{14} + \frac{4677847745746889987462052127144194425881818804}{9708851429195963609746063720323616927084070029} a^{13} + \frac{3000809726635130714935188599634538660999178930}{9708851429195963609746063720323616927084070029} a^{12} - \frac{3669399343650178840712338425529236218227648327}{9708851429195963609746063720323616927084070029} a^{11} - \frac{1923002343912046906660168366171997772152206046}{9708851429195963609746063720323616927084070029} a^{10} + \frac{117870798455700998385221051869185449600192859}{9708851429195963609746063720323616927084070029} a^{9} + \frac{661249754918737567900289671944383009501074288}{9708851429195963609746063720323616927084070029} a^{8} + \frac{3650888933131225500486331865812806679147987210}{9708851429195963609746063720323616927084070029} a^{7} + \frac{514372093230578636465651951688163671145098006}{9708851429195963609746063720323616927084070029} a^{6} - \frac{4714903429846292820836493671097036232087537322}{9708851429195963609746063720323616927084070029} a^{5} + \frac{2817567722395231626721759817690627272204871921}{9708851429195963609746063720323616927084070029} a^{4} + \frac{3830484294668721569224897737994972498233673715}{9708851429195963609746063720323616927084070029} a^{3} + \frac{4608134216082125122807376744109074163940516988}{9708851429195963609746063720323616927084070029} a^{2} + \frac{75081517785240021296099466611869774763795390}{746834725322766431518927978486432071314159233} a - \frac{28595834233441103541199398563163544314994047}{57448825024828187039917536806648620870319941}$
Class group and class number
$C_{2}\times C_{4}\times C_{12}\times C_{24}$, which has order $2304$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3171574.24527 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).D_4$ (as 16T591):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $(C_2\times OD_{16}).D_4$ |
| Character table for $(C_2\times OD_{16}).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.0.8268784250602433.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $67$ | 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.2.1.2 | $x^{2} + 268$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |