Normalized defining polynomial
\( x^{16} - 6 x^{15} + 2 x^{14} - 12 x^{13} + 667 x^{12} - 2166 x^{11} + 1538 x^{10} + 2502 x^{9} + 59618 x^{8} - 314460 x^{7} + 1075792 x^{6} - 2781018 x^{5} + 4768445 x^{4} + 1679760 x^{3} - 18353684 x^{2} + 14086248 x + 30880773 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1162337480711184271576898233831313=17^{15}\cdot 67^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $116.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{48} a^{9} - \frac{1}{8} a^{8} - \frac{1}{16} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{16} a^{3} + \frac{3}{8} a^{2} - \frac{1}{12} a + \frac{5}{16}$, $\frac{1}{240} a^{10} + \frac{1}{120} a^{9} + \frac{7}{80} a^{7} - \frac{1}{10} a^{6} - \frac{1}{4} a^{5} + \frac{1}{80} a^{4} - \frac{9}{40} a^{3} - \frac{5}{12} a^{2} + \frac{103}{240} a + \frac{9}{20}$, $\frac{1}{240} a^{11} + \frac{1}{240} a^{9} - \frac{3}{80} a^{8} - \frac{1}{40} a^{7} - \frac{9}{80} a^{6} - \frac{19}{80} a^{5} + \frac{23}{240} a^{3} + \frac{11}{80} a^{2} - \frac{29}{120} a + \frac{33}{80}$, $\frac{1}{480} a^{12} + \frac{1}{120} a^{9} + \frac{1}{20} a^{8} - \frac{1}{10} a^{7} - \frac{3}{80} a^{6} + \frac{1}{6} a^{4} + \frac{1}{40} a^{3} + \frac{3}{20} a^{2} - \frac{2}{15} a - \frac{21}{160}$, $\frac{1}{10560} a^{13} + \frac{1}{10560} a^{12} - \frac{1}{480} a^{11} + \frac{1}{880} a^{10} + \frac{17}{1760} a^{9} + \frac{169}{1760} a^{8} - \frac{41}{1760} a^{7} + \frac{51}{440} a^{6} - \frac{103}{480} a^{5} - \frac{211}{2640} a^{4} + \frac{1013}{5280} a^{3} - \frac{3}{160} a^{2} - \frac{1689}{3520} a + \frac{71}{320}$, $\frac{1}{54996480} a^{14} - \frac{17}{785664} a^{13} + \frac{271}{6110720} a^{12} - \frac{2699}{1833216} a^{11} + \frac{13}{2499840} a^{10} + \frac{61331}{6874560} a^{9} - \frac{32017}{327360} a^{8} - \frac{90653}{1309440} a^{7} - \frac{2067251}{27498240} a^{6} + \frac{424553}{5499648} a^{5} - \frac{470559}{3055360} a^{4} - \frac{72889}{2291520} a^{3} - \frac{4909417}{54996480} a^{2} + \frac{3231199}{6874560} a - \frac{34487}{238080}$, $\frac{1}{165534091322017079145191125017600} a^{15} + \frac{116677202973128457239687}{33106818264403415829038225003520} a^{14} - \frac{2229628271785472194148203621}{55178030440672359715063708339200} a^{13} + \frac{1667143094746686096178319227}{11035606088134471943012741667840} a^{12} - \frac{1835327234488241048630041247}{41383522830504269786297781254400} a^{11} + \frac{143923528899861791209701571283}{82767045661008539572595562508800} a^{10} - \frac{29458795960990233449448115207}{3448626902542022482191481771200} a^{9} + \frac{67308998040310312055472943423}{3941287888619454265361693452800} a^{8} - \frac{1828803059115525072910383136847}{20691761415252134893148890627200} a^{7} - \frac{91092813462099209675663742079}{41383522830504269786297781254400} a^{6} - \frac{294556131402322344758994819341}{1970643944309727132680846726400} a^{5} + \frac{395094647372053831045585260061}{9196338406778726619177284723200} a^{4} - \frac{3661087376703452667108804300707}{15048553756547007195017375001600} a^{3} + \frac{10440618484430786141199921589889}{23647727331716725592170160716800} a^{2} - \frac{17132893368061187703699030052547}{55178030440672359715063708339200} a + \frac{82092531007851137807394535579}{238865932643603288809799603200}$
Class group and class number
$C_{4}\times C_{32}$, which has order $128$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5962737829.94 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-1139}) \), 4.0.22054457.1, 8.0.8268784250602433.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $67$ | 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |