Normalized defining polynomial
\( x^{16} - 8 x^{15} - 4 x^{14} + 168 x^{13} - 188 x^{12} - 1420 x^{11} + 3302 x^{10} + 1464 x^{9} - 6476 x^{8} - 7080 x^{7} + 131882 x^{6} - 340070 x^{5} + 426206 x^{4} - 309188 x^{3} - 373724 x^{2} + 475135 x + 775541 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(115766691713731939356121017137=17^{13}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{17} a^{8} - \frac{4}{17} a^{7} + \frac{7}{17} a^{6} - \frac{7}{17} a^{5} - \frac{2}{17} a^{4} - \frac{6}{17} a^{3} - \frac{7}{17} a^{2} + \frac{1}{17} a + \frac{1}{17}$, $\frac{1}{17} a^{9} + \frac{8}{17} a^{7} + \frac{4}{17} a^{6} + \frac{4}{17} a^{5} + \frac{3}{17} a^{4} + \frac{3}{17} a^{3} + \frac{7}{17} a^{2} + \frac{5}{17} a + \frac{4}{17}$, $\frac{1}{17} a^{10} + \frac{2}{17} a^{7} - \frac{1}{17} a^{6} + \frac{8}{17} a^{5} + \frac{2}{17} a^{4} + \frac{4}{17} a^{3} - \frac{7}{17} a^{2} - \frac{4}{17} a - \frac{8}{17}$, $\frac{1}{17} a^{11} + \frac{7}{17} a^{7} - \frac{6}{17} a^{6} - \frac{1}{17} a^{5} + \frac{8}{17} a^{4} + \frac{5}{17} a^{3} - \frac{7}{17} a^{2} + \frac{7}{17} a - \frac{2}{17}$, $\frac{1}{3757} a^{12} - \frac{6}{3757} a^{11} + \frac{8}{3757} a^{10} + \frac{15}{3757} a^{9} - \frac{70}{3757} a^{8} + \frac{124}{3757} a^{7} - \frac{537}{3757} a^{6} + \frac{1306}{3757} a^{5} + \frac{1685}{3757} a^{4} - \frac{1708}{3757} a^{3} - \frac{1607}{3757} a^{2} + \frac{789}{3757} a + \frac{13}{289}$, $\frac{1}{3757} a^{13} - \frac{28}{3757} a^{11} + \frac{63}{3757} a^{10} + \frac{20}{3757} a^{9} - \frac{75}{3757} a^{8} - \frac{677}{3757} a^{7} - \frac{369}{3757} a^{6} + \frac{460}{3757} a^{5} + \frac{446}{3757} a^{4} + \frac{1847}{3757} a^{3} + \frac{67}{289} a^{2} + \frac{1367}{3757} a + \frac{95}{289}$, $\frac{1}{24840181616825861} a^{14} - \frac{7}{24840181616825861} a^{13} - \frac{1547422863749}{24840181616825861} a^{12} + \frac{9284537182585}{24840181616825861} a^{11} - \frac{5550990080310}{1461187153930933} a^{10} + \frac{386725899319154}{24840181616825861} a^{9} + \frac{6954851463174}{1910783201294297} a^{8} - \frac{2579877762991251}{24840181616825861} a^{7} + \frac{4087890523186330}{24840181616825861} a^{6} - \frac{1711980530957900}{24840181616825861} a^{5} + \frac{5607100544209458}{24840181616825861} a^{4} - \frac{12093144437779481}{24840181616825861} a^{3} + \frac{5646668144424859}{24840181616825861} a^{2} + \frac{652834268614009}{24840181616825861} a - \frac{46009341332986}{112399011840841}$, $\frac{1}{86021548939067956643} a^{15} + \frac{1724}{86021548939067956643} a^{14} + \frac{8005229244139337}{86021548939067956643} a^{13} + \frac{229772448275204}{7820140812642541513} a^{12} + \frac{364076906702773942}{86021548939067956643} a^{11} - \frac{406001981326755823}{86021548939067956643} a^{10} - \frac{1940253264315694851}{86021548939067956643} a^{9} - \frac{1557025836941626177}{86021548939067956643} a^{8} - \frac{36100329588646955782}{86021548939067956643} a^{7} + \frac{29969972992952313570}{86021548939067956643} a^{6} + \frac{7050573518159299578}{86021548939067956643} a^{5} - \frac{2200558853428196776}{7820140812642541513} a^{4} + \frac{40771457758596258172}{86021548939067956643} a^{3} + \frac{27827083651870258806}{86021548939067956643} a^{2} - \frac{27607355530248511265}{86021548939067956643} a - \frac{1739286817061970700}{6617042226082150511}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32889782.1041 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-43}) \), 4.0.31433.1, 8.0.4854208531457.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.7.7 | $x^{8} + 51$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.6.3 | $x^{8} - 17 x^{4} + 867$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ | |
| 43 | Data not computed | ||||||