Normalized defining polynomial
\( x^{16} - 4 x^{15} - 13 x^{14} + 13 x^{13} - 208 x^{12} + 615 x^{11} + 3549 x^{10} + 3624 x^{9} + 24634 x^{8} + 49059 x^{7} + 68036 x^{6} + 110519 x^{5} + 190104 x^{4} + 506625 x^{3} + 856157 x^{2} + 651963 x + 180323 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(115766691713731939356121017137=17^{13}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} + \frac{2}{13} a^{10} + \frac{5}{13} a^{9} - \frac{2}{13} a^{8} - \frac{6}{13} a^{6} + \frac{5}{13} a^{5} - \frac{6}{13} a^{4} + \frac{1}{13} a^{3} - \frac{3}{13} a^{2} + \frac{1}{13} a$, $\frac{1}{13} a^{13} + \frac{2}{13} a^{11} + \frac{5}{13} a^{10} - \frac{2}{13} a^{9} - \frac{6}{13} a^{7} + \frac{5}{13} a^{6} - \frac{6}{13} a^{5} + \frac{1}{13} a^{4} - \frac{3}{13} a^{3} + \frac{1}{13} a^{2}$, $\frac{1}{143} a^{14} + \frac{5}{143} a^{13} + \frac{1}{143} a^{12} + \frac{54}{143} a^{11} + \frac{60}{143} a^{10} - \frac{2}{143} a^{9} - \frac{56}{143} a^{8} + \frac{14}{143} a^{7} - \frac{14}{143} a^{6} + \frac{4}{13} a^{5} - \frac{5}{143} a^{4} - \frac{54}{143} a^{3} + \frac{34}{143} a^{2} + \frac{64}{143} a$, $\frac{1}{26775257239240181767698246226962214121} a^{15} - \frac{17804018302739049786033467062295625}{26775257239240181767698246226962214121} a^{14} + \frac{80864253920346668654506860188061665}{2434114294476380160699840566087474011} a^{13} + \frac{146639854293183180531724685421055264}{26775257239240181767698246226962214121} a^{12} - \frac{188586281854588325729405937037144811}{26775257239240181767698246226962214121} a^{11} - \frac{8106799260609961251237235705497852010}{26775257239240181767698246226962214121} a^{10} - \frac{1556685144104249074531001558136693041}{26775257239240181767698246226962214121} a^{9} + \frac{11135612014573218233342575516995290233}{26775257239240181767698246226962214121} a^{8} - \frac{3165091641888175660769294211703880155}{26775257239240181767698246226962214121} a^{7} - \frac{12994860828575389101203266356657040114}{26775257239240181767698246226962214121} a^{6} + \frac{12229776947702704319371553489785019916}{26775257239240181767698246226962214121} a^{5} - \frac{4277855350923048907278144065833254112}{26775257239240181767698246226962214121} a^{4} + \frac{9487786847769851812442269873277040819}{26775257239240181767698246226962214121} a^{3} - \frac{956958580018454001624201737135890421}{2434114294476380160699840566087474011} a^{2} + \frac{860369377641638422094365039872715910}{2059635172249244751361403555920170317} a + \frac{4193913812197255585254496982533214}{14403043162582131128401423467973219}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 49367944.0923 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T289):
| A solvable group of order 128 |
| The 44 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-43}) \), 4.0.31433.1, 8.0.4854208531457.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.8.6.4 | $x^{8} + 136 x^{4} + 7803$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ |
| 17.8.7.8 | $x^{8} + 4131$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 43 | Data not computed | ||||||