Normalized defining polynomial
\( x^{16} - 6 x^{15} - 3 x^{14} + 100 x^{13} - 200 x^{12} - 374 x^{11} + 1876 x^{10} - 1520 x^{9} - 3801 x^{8} + 8020 x^{7} + 444 x^{6} - 16792 x^{5} + 20480 x^{4} - 8320 x^{3} - 1032 x^{2} + 672 x + 496 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11574317056000000000000=2^{24}\cdot 5^{12}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{12} - \frac{1}{6} a^{11} - \frac{1}{12} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} + \frac{1}{3} a^{5} - \frac{5}{12} a^{4} - \frac{1}{2} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{12} a^{13} + \frac{1}{12} a^{11} - \frac{1}{6} a^{10} - \frac{1}{2} a^{8} + \frac{1}{3} a^{6} + \frac{1}{4} a^{5} + \frac{1}{6} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{24} a^{14} - \frac{1}{24} a^{12} + \frac{1}{12} a^{11} + \frac{1}{12} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{6} a^{7} - \frac{3}{8} a^{6} + \frac{1}{4} a^{5} - \frac{1}{12} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3}$, $\frac{1}{34690021324536} a^{15} - \frac{36979022601}{5781670220756} a^{14} + \frac{402581851027}{11563340441512} a^{13} - \frac{16127051189}{1445417555189} a^{12} + \frac{87271619306}{4336252665567} a^{11} - \frac{926453143451}{5781670220756} a^{10} - \frac{399100529327}{1445417555189} a^{9} - \frac{1266917213365}{4336252665567} a^{8} - \frac{4384804008659}{11563340441512} a^{7} + \frac{348599772829}{8672505331134} a^{6} - \frac{520207499543}{4336252665567} a^{5} - \frac{1316518861597}{8672505331134} a^{4} - \frac{1209287127021}{2890835110378} a^{3} - \frac{69000663971}{4336252665567} a^{2} + \frac{1173231010025}{4336252665567} a + \frac{694403794126}{1445417555189}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{3872851358149}{8672505331134} a^{15} + \frac{65031526386805}{34690021324536} a^{14} + \frac{82100434036529}{17345010662268} a^{13} - \frac{1254505275705485}{34690021324536} a^{12} + \frac{207331121331763}{8672505331134} a^{11} + \frac{3658608301485941}{17345010662268} a^{10} - \frac{2641307798764673}{5781670220756} a^{9} - \frac{1307097575863927}{8672505331134} a^{8} + \frac{6200612197152473}{4336252665567} a^{7} - \frac{11434417107281439}{11563340441512} a^{6} - \frac{2896371701032776}{1445417555189} a^{5} + \frac{22389115028065175}{5781670220756} a^{4} - \frac{9159680884802132}{4336252665567} a^{3} - \frac{176997946363827}{1445417555189} a^{2} + \frac{330680939035162}{1445417555189} a + \frac{523674803447468}{4336252665567} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 60573.9234845 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T268):
| A solvable group of order 128 |
| The 29 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), 4.0.8000.2, \(\Q(\zeta_{5})\), \(\Q(\sqrt{2}, \sqrt{5})\), 8.0.64000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 41 | Data not computed | ||||||