Normalized defining polynomial
\( x^{16} - 6 x^{15} - 3 x^{14} + 72 x^{13} - 48 x^{12} - 366 x^{11} + 432 x^{10} + 876 x^{9} - 855 x^{8} - 4176 x^{7} + 8024 x^{6} - 5328 x^{5} + 5272 x^{4} - 672 x^{3} + 992 x^{2} + 16 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11574317056000000000000=2^{24}\cdot 5^{12}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{11} + \frac{1}{16} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{8} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{7}{16} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{16} a^{13} + \frac{1}{16} a^{11} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{3}{8} a^{8} + \frac{1}{4} a^{6} + \frac{1}{16} a^{5} - \frac{1}{8} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{2624} a^{14} - \frac{1}{1312} a^{13} + \frac{67}{2624} a^{12} + \frac{23}{328} a^{11} + \frac{5}{1312} a^{10} - \frac{203}{1312} a^{9} - \frac{267}{656} a^{8} - \frac{119}{328} a^{7} + \frac{1249}{2624} a^{6} - \frac{319}{656} a^{5} + \frac{315}{1312} a^{4} + \frac{319}{656} a^{2} - \frac{51}{164} a + \frac{21}{328}$, $\frac{1}{340717851990744576064} a^{15} + \frac{12325235641806753}{85179462997686144016} a^{14} - \frac{6475867623314783733}{340717851990744576064} a^{13} + \frac{1232519998352133033}{170358925995372288032} a^{12} + \frac{4707228191851260247}{170358925995372288032} a^{11} - \frac{15838786965125709757}{170358925995372288032} a^{10} + \frac{7518492218703559337}{21294865749421536004} a^{9} - \frac{13573910204446239779}{42589731498843072008} a^{8} - \frac{56079921839945003967}{340717851990744576064} a^{7} - \frac{45894566343771574227}{170358925995372288032} a^{6} + \frac{79053693234219884193}{170358925995372288032} a^{5} + \frac{25069369975235705177}{85179462997686144016} a^{4} - \frac{6622174501341484949}{85179462997686144016} a^{3} - \frac{2923602715674399125}{42589731498843072008} a^{2} + \frac{2823576962946485707}{42589731498843072008} a - \frac{7803798965663418117}{21294865749421536004}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{6727789889287}{3801296992042402} a^{15} + \frac{1293060315775509}{121641503745356864} a^{14} + \frac{260020987738157}{60820751872678432} a^{13} - \frac{14831512444052701}{121641503745356864} a^{12} + \frac{2707947308296061}{30410375936339216} a^{11} + \frac{35383351172705103}{60820751872678432} a^{10} - \frac{44032565312999783}{60820751872678432} a^{9} - \frac{37080847705310177}{30410375936339216} a^{8} + \frac{8323747387826573}{7602593984084804} a^{7} + \frac{19646800221853805}{2966865945008704} a^{6} - \frac{202780899481129203}{15205187968169608} a^{5} + \frac{804840001500438261}{60820751872678432} a^{4} - \frac{131010188313826853}{7602593984084804} a^{3} + \frac{206546282841049203}{30410375936339216} a^{2} - \frac{17683300533000177}{3801296992042402} a + \frac{13694851687425595}{15205187968169608} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 45664.5166523 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^2:C_4$ (as 16T21):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2 \times (C_2^2:C_4)$ |
| Character table for $C_2 \times (C_2^2:C_4)$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |