Normalized defining polynomial
\( x^{16} - 4 x^{15} + 45 x^{14} + 66 x^{13} + 161 x^{12} + 2442 x^{11} + 3998 x^{10} + 20474 x^{9} + 33149 x^{8} + 74028 x^{7} + 404579 x^{6} - 411364 x^{5} + 1614500 x^{4} - 7900602 x^{3} + 12183227 x^{2} - 7967400 x + 2173248 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11564522202379417842625806598144=2^{18}\cdot 97^{4}\cdot 163^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 97, 163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{910} a^{14} - \frac{333}{910} a^{13} - \frac{34}{91} a^{12} - \frac{219}{455} a^{11} - \frac{31}{130} a^{10} + \frac{251}{910} a^{9} - \frac{29}{70} a^{8} + \frac{25}{182} a^{7} - \frac{166}{455} a^{6} + \frac{16}{35} a^{5} - \frac{1}{10} a^{4} - \frac{317}{910} a^{3} - \frac{3}{182} a^{2} - \frac{73}{910} a - \frac{14}{65}$, $\frac{1}{72800062718653662337546524360865842822400014935640} a^{15} + \frac{79110387933759607987178620292493143505286379}{1400001206127955044952817776170496977353846441070} a^{14} + \frac{11727668542985250709636498911958072077092436278119}{24266687572884554112515508120288614274133338311880} a^{13} + \frac{5809911424414412626992898178966692560368897793767}{12133343786442277056257754060144307137066669155940} a^{12} - \frac{69066391383485910413162283246619351943316912035}{297143113137361887092026630044350378866938836472} a^{11} + \frac{5082491819094214245256866634287498235555460677759}{12133343786442277056257754060144307137066669155940} a^{10} - \frac{9188065561153692142849946044383302878266751311533}{36400031359326831168773262180432921411200007467820} a^{9} - \frac{1401974046837163874141570831080658062312234390931}{36400031359326831168773262180432921411200007467820} a^{8} - \frac{35733212852104015160899575081199139967408325885507}{72800062718653662337546524360865842822400014935640} a^{7} + \frac{2807127151047222520691774611652228839686327054647}{6066671893221138528128877030072153568533334577970} a^{6} - \frac{26883803188911336761294311408408078499578637291}{160000137843194862280322031562342511697582450408} a^{5} + \frac{1130038721846663368614044305958579231559266055863}{18200015679663415584386631090216460705600003733910} a^{4} + \frac{2250042545399523640253848867895388150535894191107}{18200015679663415584386631090216460705600003733910} a^{3} - \frac{818812328160726778567134410923689103143921154463}{12133343786442277056257754060144307137066669155940} a^{2} + \frac{272612482584619545773915331608124064485195984641}{800000689215974311401610157811712558487912252040} a - \frac{12321126917451102509992439336192034379560929201}{61904815236950393144172214592572995597278924265}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 713951502.563 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 69 conjugacy class representatives for t16n1656 are not computed |
| Character table for t16n1656 is not computed |
Intermediate fields
| 4.4.26569.1, 8.4.361426821632.9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.12.18.23 | $x^{12} + 52 x^{10} - 28 x^{8} + 8 x^{6} + 64 x^{4} - 32 x^{2} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 97.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 97.6.3.1 | $x^{6} - 194 x^{4} + 9409 x^{2} - 22816825$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $163$ | 163.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 163.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 163.3.2.1 | $x^{3} - 163$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 163.3.2.1 | $x^{3} - 163$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 163.3.2.1 | $x^{3} - 163$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 163.3.2.1 | $x^{3} - 163$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |