Normalized defining polynomial
\( x^{16} - 2 x^{15} + 18 x^{14} + 158 x^{13} + 718 x^{12} + 1324 x^{11} + 5679 x^{10} + 72254 x^{9} + 323371 x^{8} + 739018 x^{7} + 1269996 x^{6} + 4996370 x^{5} + 15767727 x^{4} + 14111857 x^{3} - 19828694 x^{2} - 29709493 x + 20958289 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1154447610730415783388912356000569=37^{14}\cdot 71^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $116.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{11} a^{13} + \frac{4}{11} a^{12} + \frac{3}{11} a^{11} - \frac{2}{11} a^{10} - \frac{5}{11} a^{9} - \frac{3}{11} a^{8} + \frac{4}{11} a^{7} + \frac{4}{11} a^{6} + \frac{4}{11} a^{5} + \frac{5}{11} a^{4} - \frac{3}{11} a^{3} + \frac{1}{11} a^{2} - \frac{1}{11} a$, $\frac{1}{64823} a^{14} + \frac{681}{64823} a^{13} + \frac{5571}{64823} a^{12} + \frac{31905}{64823} a^{11} + \frac{13722}{64823} a^{10} - \frac{328}{5893} a^{9} - \frac{15370}{64823} a^{8} + \frac{26197}{64823} a^{7} - \frac{5747}{64823} a^{6} - \frac{30969}{64823} a^{5} - \frac{27836}{64823} a^{4} + \frac{18925}{64823} a^{3} + \frac{13568}{64823} a^{2} + \frac{17539}{64823} a - \frac{864}{5893}$, $\frac{1}{29327633256007008850234803024461573141650712646281} a^{15} - \frac{29713585293964284219153518053909195983099512}{29327633256007008850234803024461573141650712646281} a^{14} + \frac{443171123977320947588814920860248007863734140987}{29327633256007008850234803024461573141650712646281} a^{13} + \frac{9866354813495040425444462865279918408606473940436}{29327633256007008850234803024461573141650712646281} a^{12} - \frac{12428017268480947586347444223991816929395022292997}{29327633256007008850234803024461573141650712646281} a^{11} - \frac{3866714166700548464115511421952822895996949682169}{29327633256007008850234803024461573141650712646281} a^{10} + \frac{10495379732285330530449384453083189579736467743916}{29327633256007008850234803024461573141650712646281} a^{9} - \frac{11071525040889965287533730102980662895391308252515}{29327633256007008850234803024461573141650712646281} a^{8} - \frac{2700997471287844242639669522452149144686336956866}{29327633256007008850234803024461573141650712646281} a^{7} - \frac{4426384365604878855495226883907923028546159093788}{29327633256007008850234803024461573141650712646281} a^{6} - \frac{11284640190554870713804960697078511936412510458483}{29327633256007008850234803024461573141650712646281} a^{5} - \frac{2181473157212146843149855728136673855692793628888}{29327633256007008850234803024461573141650712646281} a^{4} + \frac{4330293332440637082528040844539347898341487553132}{29327633256007008850234803024461573141650712646281} a^{3} + \frac{4385913841142633961738616557603977899057821880}{715308128195292898786214707913696905893919820641} a^{2} + \frac{7994407578056719288549326619648157080941841107233}{29327633256007008850234803024461573141650712646281} a + \frac{1316101947291099607037277024065138323085131160767}{2666148477818818986384982093132870285604610240571}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13120388619.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{37}) \), 4.0.50653.1, 4.2.3596363.1, 4.2.97199.1, 8.0.478551592627453.1 x2, 8.0.12933826827769.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 37 | Data not computed | ||||||
| 71 | Data not computed | ||||||