Normalized defining polynomial
\( x^{16} + 84 x^{14} + 3638 x^{12} - 24 x^{11} + 102884 x^{10} + 2520 x^{9} + 2027175 x^{8} + 83712 x^{7} + 27955244 x^{6} + 589920 x^{5} + 259368858 x^{4} - 6750888 x^{3} + 1466638388 x^{2} - 85763016 x + 3821989918 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(114978539144999765882759100235776=2^{48}\cdot 3^{8}\cdot 53^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $100.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2544=2^{4}\cdot 3\cdot 53\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2544}(1,·)$, $\chi_{2544}(2119,·)$, $\chi_{2544}(1483,·)$, $\chi_{2544}(847,·)$, $\chi_{2544}(211,·)$, $\chi_{2544}(953,·)$, $\chi_{2544}(2015,·)$, $\chi_{2544}(1379,·)$, $\chi_{2544}(743,·)$, $\chi_{2544}(107,·)$, $\chi_{2544}(317,·)$, $\chi_{2544}(2225,·)$, $\chi_{2544}(1909,·)$, $\chi_{2544}(1273,·)$, $\chi_{2544}(637,·)$, $\chi_{2544}(1589,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{493689551} a^{14} + \frac{23633264}{493689551} a^{13} + \frac{99788415}{493689551} a^{12} - \frac{168158517}{493689551} a^{11} - \frac{238961293}{493689551} a^{10} - \frac{158749987}{493689551} a^{9} + \frac{119706262}{493689551} a^{8} - \frac{156807623}{493689551} a^{7} + \frac{3821905}{493689551} a^{6} + \frac{194186134}{493689551} a^{5} - \frac{168128692}{493689551} a^{4} - \frac{156883760}{493689551} a^{3} + \frac{1600862}{493689551} a^{2} + \frac{239552152}{493689551} a - \frac{57851348}{493689551}$, $\frac{1}{646428445194350978617895347040412420106031} a^{15} + \frac{502449166498982388559313733955507}{646428445194350978617895347040412420106031} a^{14} - \frac{82094104434962968617443926402801532381481}{646428445194350978617895347040412420106031} a^{13} + \frac{191790390694198765344954469720455483799973}{646428445194350978617895347040412420106031} a^{12} - \frac{250810578045440373405004600927400952346413}{646428445194350978617895347040412420106031} a^{11} + \frac{21937726809193178684384428304993078683784}{646428445194350978617895347040412420106031} a^{10} - \frac{35141694942295821866715369299666922251432}{92346920742050139802556478148630345729433} a^{9} + \frac{33375140582177114113296385885267404118774}{92346920742050139802556478148630345729433} a^{8} - \frac{83316129543902168336645089304056040749486}{646428445194350978617895347040412420106031} a^{7} + \frac{148222021313486235855178091759431124115116}{646428445194350978617895347040412420106031} a^{6} + \frac{244116599833987859493706355457111810135388}{646428445194350978617895347040412420106031} a^{5} - \frac{240850057665848883429263945578136930490366}{646428445194350978617895347040412420106031} a^{4} + \frac{20881254827309966762523272261308317217443}{646428445194350978617895347040412420106031} a^{3} + \frac{194384122631049107195265973668890613080016}{646428445194350978617895347040412420106031} a^{2} + \frac{223996742439800043151133558194188968599711}{646428445194350978617895347040412420106031} a + \frac{48825079741273201109760775794805100857881}{646428445194350978617895347040412420106031}$
Class group and class number
$C_{3}\times C_{3}\times C_{59160}$, which has order $532440$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11964.310642723332 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.9 | $x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $53$ | 53.8.4.1 | $x^{8} + 101124 x^{4} - 148877 x^{2} + 2556515844$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 53.8.4.1 | $x^{8} + 101124 x^{4} - 148877 x^{2} + 2556515844$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |