Properties

Label 16.0.11485810791015625.1
Degree $16$
Signature $[0, 8]$
Discriminant $5^{12}\cdot 19^{6}$
Root discriminant $10.09$
Ramified primes $5, 19$
Class number $1$
Class group Trivial
Galois group $D_4:C_4$ (as 16T26)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -6, 15, -15, 4, -1, 7, 0, -9, -1, 12, -2, -11, 8, 1, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 + x^14 + 8*x^13 - 11*x^12 - 2*x^11 + 12*x^10 - x^9 - 9*x^8 + 7*x^6 - x^5 + 4*x^4 - 15*x^3 + 15*x^2 - 6*x + 1)
 
gp: K = bnfinit(x^16 - 3*x^15 + x^14 + 8*x^13 - 11*x^12 - 2*x^11 + 12*x^10 - x^9 - 9*x^8 + 7*x^6 - x^5 + 4*x^4 - 15*x^3 + 15*x^2 - 6*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 3 x^{15} + x^{14} + 8 x^{13} - 11 x^{12} - 2 x^{11} + 12 x^{10} - x^{9} - 9 x^{8} + 7 x^{6} - x^{5} + 4 x^{4} - 15 x^{3} + 15 x^{2} - 6 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(11485810791015625=5^{12}\cdot 19^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $10.09$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3799} a^{15} - \frac{720}{3799} a^{14} - \frac{423}{3799} a^{13} - \frac{621}{3799} a^{12} + \frac{763}{3799} a^{11} - \frac{17}{3799} a^{10} + \frac{804}{3799} a^{9} + \frac{979}{3799} a^{8} + \frac{863}{3799} a^{7} + \frac{466}{3799} a^{6} + \frac{197}{3799} a^{5} - \frac{687}{3799} a^{4} - \frac{1287}{3799} a^{3} - \frac{3}{29} a^{2} + \frac{670}{3799} a - \frac{1722}{3799}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{351}{3799} a^{15} - \frac{1986}{3799} a^{14} + \frac{3487}{3799} a^{13} + \frac{2371}{3799} a^{12} - \frac{13313}{3799} a^{11} + \frac{9229}{3799} a^{10} + \frac{12475}{3799} a^{9} - \frac{13477}{3799} a^{8} - \frac{8605}{3799} a^{7} + \frac{11606}{3799} a^{6} + \frac{8363}{3799} a^{5} - \frac{5599}{3799} a^{4} - \frac{3455}{3799} a^{3} - \frac{67}{29} a^{2} + \frac{22426}{3799} a - \frac{7979}{3799} \) (order $10$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 78.0183796697 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_4:C_4$ (as 16T26):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 14 conjugacy class representatives for $D_4:C_4$
Character table for $D_4:C_4$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.2.475.1, 4.2.2375.1, 8.2.4286875.1, 8.2.107171875.1, 8.0.5640625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 16 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$19$19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$