Normalized defining polynomial
\( x^{16} + 328 x^{14} + 101516 x^{12} + 1931264 x^{10} + 27131422 x^{8} + 174770208 x^{6} + 831126744 x^{4} + 196071840 x^{2} + 44116164 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1147634942730979008947338773912344095761629184=2^{62}\cdot 3^{8}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $654.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3936=2^{5}\cdot 3\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3936}(1,·)$, $\chi_{3936}(2627,·)$, $\chi_{3936}(2633,·)$, $\chi_{3936}(2705,·)$, $\chi_{3936}(1555,·)$, $\chi_{3936}(875,·)$, $\chi_{3936}(3353,·)$, $\chi_{3936}(2651,·)$, $\chi_{3936}(1313,·)$, $\chi_{3936}(1315,·)$, $\chi_{3936}(1321,·)$, $\chi_{3936}(3499,·)$, $\chi_{3936}(1393,·)$, $\chi_{3936}(2867,·)$, $\chi_{3936}(2041,·)$, $\chi_{3936}(1339,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{82} a^{8}$, $\frac{1}{246} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{14022} a^{10} + \frac{13}{14022} a^{8} - \frac{13}{171} a^{6} + \frac{62}{171} a^{4} - \frac{68}{171} a^{2} + \frac{1}{19}$, $\frac{1}{42066} a^{11} + \frac{13}{42066} a^{9} - \frac{184}{513} a^{7} - \frac{109}{513} a^{5} - \frac{239}{513} a^{3} - \frac{6}{19} a$, $\frac{1}{156864114} a^{12} - \frac{14}{1912977} a^{10} - \frac{4666}{1912977} a^{8} - \frac{848908}{1912977} a^{6} - \frac{5018}{1912977} a^{4} - \frac{1472}{23617} a^{2} - \frac{72}{23617}$, $\frac{1}{470592342} a^{13} - \frac{14}{5738931} a^{11} - \frac{4666}{5738931} a^{9} - \frac{2761885}{5738931} a^{7} - \frac{1917995}{5738931} a^{5} - \frac{8363}{23617} a^{3} + \frac{23545}{70851} a$, $\frac{1}{3665433843814124142486} a^{14} - \frac{81828773495}{166610629264278370113} a^{12} + \frac{84782509540953935}{3665433843814124142486} a^{10} - \frac{4851537525362432525}{1832716921907062071243} a^{8} + \frac{846440726742989858}{4063673884494594393} a^{6} - \frac{86307997972178066}{451519320499399377} a^{4} + \frac{25130368687290055}{551856947277043683} a^{2} - \frac{1464147919148507}{61317438586338187}$, $\frac{1}{10996301531442372427458} a^{15} - \frac{81828773495}{499831887792835110339} a^{13} + \frac{84782509540953935}{10996301531442372427458} a^{11} - \frac{4851537525362432525}{5498150765721186213729} a^{9} + \frac{846440726742989858}{12191021653483783179} a^{7} - \frac{537827318471577443}{1354557961498198131} a^{5} + \frac{576987315964333738}{1655570841831131049} a^{3} + \frac{59853290667189680}{183952315759014561} a$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{4}\times C_{4}\times C_{28}\times C_{74256}$, which has order $1064534016$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{8023862542}{1474430347471490001} a^{14} + \frac{2629364650171}{1474430347471490001} a^{12} + \frac{19847682152248}{35961715791987561} a^{10} + \frac{30500327990298151}{2948860694942980002} a^{8} + \frac{5223381783311984}{35961715791987561} a^{6} + \frac{3666698840459018}{3995746199109729} a^{4} + \frac{1974798922703368}{443971799901081} a^{2} + \frac{51764031839705}{49330199989009} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 38574398.31621447 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 41 | Data not computed | ||||||