Normalized defining polynomial
\( x^{16} + 984 x^{14} + 373428 x^{12} + 70440624 x^{10} + 6974744274 x^{8} + 343883864448 x^{6} + 6663932840448 x^{4} + 2469564039168 x^{2} + 180699807744 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1147634942730979008947338773912344095761629184=2^{62}\cdot 3^{8}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $654.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3936=2^{5}\cdot 3\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3936}(1,·)$, $\chi_{3936}(2627,·)$, $\chi_{3936}(73,·)$, $\chi_{3936}(659,·)$, $\chi_{3936}(875,·)$, $\chi_{3936}(3289,·)$, $\chi_{3936}(2651,·)$, $\chi_{3936}(3361,·)$, $\chi_{3936}(2843,·)$, $\chi_{3936}(1969,·)$, $\chi_{3936}(1321,·)$, $\chi_{3936}(683,·)$, $\chi_{3936}(1393,·)$, $\chi_{3936}(2867,·)$, $\chi_{3936}(2041,·)$, $\chi_{3936}(899,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{27} a^{4} + \frac{1}{9} a^{2} - \frac{1}{3}$, $\frac{1}{27} a^{5} + \frac{1}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{81} a^{6} + \frac{1}{9} a^{2} + \frac{1}{3}$, $\frac{1}{81} a^{7} + \frac{1}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{179334} a^{8} + \frac{2}{729} a^{6} - \frac{1}{243} a^{4} + \frac{7}{81} a^{2} - \frac{8}{27}$, $\frac{1}{358668} a^{9} + \frac{1}{729} a^{7} + \frac{4}{243} a^{5} + \frac{8}{81} a^{3} - \frac{17}{54} a$, $\frac{1}{4304016} a^{10} - \frac{7}{2916} a^{6} + \frac{41}{648} a^{2} + \frac{2}{27}$, $\frac{1}{8608032} a^{11} + \frac{29}{5832} a^{7} - \frac{1}{54} a^{5} - \frac{175}{1296} a^{3} - \frac{7}{54} a$, $\frac{1}{9606563712} a^{12} - \frac{1}{133424496} a^{10} + \frac{167}{88949664} a^{8} + \frac{137}{542376} a^{6} - \frac{1541}{482112} a^{4} - \frac{55}{558} a^{2} + \frac{779}{2511}$, $\frac{1}{38426254848} a^{13} - \frac{1}{533697984} a^{11} - \frac{329}{355798656} a^{9} - \frac{8047}{2169504} a^{7} - \frac{17413}{1928448} a^{5} - \frac{371}{20088} a^{3} + \frac{2017}{5022} a$, $\frac{1}{179182708209002990592} a^{14} - \frac{7715}{30349374696646848} a^{12} + \frac{3522083231}{40465832928862464} a^{10} + \frac{12404045291}{10116458232215616} a^{8} + \frac{32905949220155}{8992407317524992} a^{6} - \frac{110885116937}{9138625322688} a^{4} + \frac{165154374397}{1142328165336} a^{2} - \frac{1312704035}{5288556321}$, $\frac{1}{716730832836011962368} a^{15} - \frac{7715}{121397498786587392} a^{13} - \frac{5879794673}{161863331715449856} a^{11} - \frac{44007222133}{40465832928862464} a^{9} - \frac{81195241022789}{35969629270099968} a^{7} + \frac{265189999223}{36554501290752} a^{5} + \frac{187466887565}{2284656330672} a^{3} - \frac{248659162}{587617369} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{700}\times C_{23800}$, which has order $4264960000$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11418873.067779342 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.3 | $x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{2} + 18$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ |
| 2.8.31.3 | $x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{2} + 18$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ | |
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.8.7.4 | $x^{8} - 1912896$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.4 | $x^{8} - 1912896$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |