Properties

Label 16.0.11476349427...9184.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{62}\cdot 3^{8}\cdot 41^{14}$
Root discriminant $654.99$
Ramified primes $2, 3, 41$
Class number $3579060224$ (GRH)
Class group $[2, 2, 2, 2, 2, 2, 4, 4, 3495176]$ (GRH)
Galois group $C_8\times C_2$ (as 16T5)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1185571438608384, 0, 200034687172608, 0, 12938231720448, 0, 414992585088, 0, 7238830194, 0, 70440624, 0, 373428, 0, 984, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 984*x^14 + 373428*x^12 + 70440624*x^10 + 7238830194*x^8 + 414992585088*x^6 + 12938231720448*x^4 + 200034687172608*x^2 + 1185571438608384)
 
gp: K = bnfinit(x^16 + 984*x^14 + 373428*x^12 + 70440624*x^10 + 7238830194*x^8 + 414992585088*x^6 + 12938231720448*x^4 + 200034687172608*x^2 + 1185571438608384, 1)
 

Normalized defining polynomial

\( x^{16} + 984 x^{14} + 373428 x^{12} + 70440624 x^{10} + 7238830194 x^{8} + 414992585088 x^{6} + 12938231720448 x^{4} + 200034687172608 x^{2} + 1185571438608384 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1147634942730979008947338773912344095761629184=2^{62}\cdot 3^{8}\cdot 41^{14}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $654.99$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(3936=2^{5}\cdot 3\cdot 41\)
Dirichlet character group:    $\lbrace$$\chi_{3936}(1,·)$, $\chi_{3936}(1667,·)$, $\chi_{3936}(73,·)$, $\chi_{3936}(3851,·)$, $\chi_{3936}(1859,·)$, $\chi_{3936}(3289,·)$, $\chi_{3936}(1883,·)$, $\chi_{3936}(3361,·)$, $\chi_{3936}(3611,·)$, $\chi_{3936}(1393,·)$, $\chi_{3936}(1321,·)$, $\chi_{3936}(1643,·)$, $\chi_{3936}(1969,·)$, $\chi_{3936}(3635,·)$, $\chi_{3936}(3827,·)$, $\chi_{3936}(2041,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{9} a^{4}$, $\frac{1}{27} a^{5} - \frac{1}{3} a$, $\frac{1}{81} a^{6} - \frac{1}{9} a^{2}$, $\frac{1}{81} a^{7} - \frac{1}{9} a^{3}$, $\frac{1}{19926} a^{8} - \frac{1}{27} a^{4}$, $\frac{1}{119556} a^{9} - \frac{1}{81} a^{5} + \frac{1}{18} a$, $\frac{1}{4304016} a^{10} - \frac{1}{59778} a^{8} + \frac{5}{2916} a^{6} + \frac{4}{81} a^{4} + \frac{97}{648} a^{2}$, $\frac{1}{8608032} a^{11} + \frac{5}{5832} a^{7} - \frac{1}{162} a^{5} + \frac{97}{1296} a^{3} - \frac{5}{18} a$, $\frac{1}{309889152} a^{12} + \frac{1}{12912048} a^{10} + \frac{85}{8608032} a^{8} + \frac{97}{17496} a^{6} - \frac{2303}{46656} a^{4} - \frac{28}{243} a^{2}$, $\frac{1}{1239556608} a^{13} + \frac{1}{51648192} a^{11} - \frac{59}{34432128} a^{9} + \frac{313}{69984} a^{7} + \frac{577}{186624} a^{5} - \frac{34}{243} a^{3} - \frac{1}{9} a$, $\frac{1}{27017117847482641007616} a^{14} - \frac{11037165119}{27456420576710001024} a^{12} - \frac{745507556819}{18304280384473334016} a^{10} + \frac{33494567723657}{1525356698706111168} a^{8} - \frac{21030954866941759}{4067617863216296448} a^{6} - \frac{14797265062231}{516719748884184} a^{4} - \frac{18033195162313}{172239916294728} a^{2} - \frac{20578978631}{88600779987}$, $\frac{1}{972616242509375076274176} a^{15} - \frac{34604938135}{123553892595195004608} a^{13} - \frac{34768207071827}{658954093841040024576} a^{11} + \frac{166927342384079}{54912841153420002048} a^{9} - \frac{790335224950545151}{146434243075786672128} a^{7} + \frac{2279956392970255}{148815287678644992} a^{5} - \frac{22156099599869}{775079623326276} a^{3} + \frac{194207010313}{797407019883} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{3495176}$, which has order $3579060224$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 11418873.067779342 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_8$ (as 16T5):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_8\times C_2$
Character table for $C_8\times C_2$

Intermediate fields

\(\Q(\sqrt{41}) \), \(\Q(\sqrt{82}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{41})\), 4.4.141150208.1, 4.4.141150208.2, 8.8.19923381218443264.6, 8.0.33876761101542440828928.4, 8.0.33876761101542440828928.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.31.1$x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{2} + 50$$8$$1$$31$$C_8$$[3, 4, 5]$
2.8.31.1$x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{2} + 50$$8$$1$$31$$C_8$$[3, 4, 5]$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$41$41.8.7.2$x^{8} - 1476$$8$$1$$7$$C_8$$[\ ]_{8}$
41.8.7.2$x^{8} - 1476$$8$$1$$7$$C_8$$[\ ]_{8}$