Properties

Label 16.0.11471358506...5625.1
Degree $16$
Signature $[0, 8]$
Discriminant $5^{4}\cdot 17^{12}\cdot 17749^{2}$
Root discriminant $42.53$
Ramified primes $5, 17, 17749$
Class number $15$ (GRH)
Class group $[15]$ (GRH)
Galois group 16T1385

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 1, 3, -8, 14, -25, 54, -28, 77, 28, 54, 25, 14, 8, 3, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 + 3*x^14 + 8*x^13 + 14*x^12 + 25*x^11 + 54*x^10 + 28*x^9 + 77*x^8 - 28*x^7 + 54*x^6 - 25*x^5 + 14*x^4 - 8*x^3 + 3*x^2 + x + 1)
 
gp: K = bnfinit(x^16 - x^15 + 3*x^14 + 8*x^13 + 14*x^12 + 25*x^11 + 54*x^10 + 28*x^9 + 77*x^8 - 28*x^7 + 54*x^6 - 25*x^5 + 14*x^4 - 8*x^3 + 3*x^2 + x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} + 3 x^{14} + 8 x^{13} + 14 x^{12} + 25 x^{11} + 54 x^{10} + 28 x^{9} + 77 x^{8} - 28 x^{7} + 54 x^{6} - 25 x^{5} + 14 x^{4} - 8 x^{3} + 3 x^{2} + x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(114713585069001347360475625=5^{4}\cdot 17^{12}\cdot 17749^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $42.53$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 17, 17749$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{6} + \frac{1}{5} a^{4} + \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5}$, $\frac{1}{50} a^{12} - \frac{2}{25} a^{11} - \frac{2}{25} a^{10} - \frac{1}{50} a^{9} - \frac{2}{5} a^{8} - \frac{2}{25} a^{7} - \frac{3}{50} a^{6} + \frac{2}{25} a^{5} - \frac{2}{5} a^{4} + \frac{1}{50} a^{3} - \frac{2}{25} a^{2} + \frac{2}{25} a + \frac{1}{50}$, $\frac{1}{50} a^{13} + \frac{3}{50} a^{10} + \frac{8}{25} a^{9} - \frac{7}{25} a^{8} + \frac{11}{50} a^{7} + \frac{6}{25} a^{6} + \frac{8}{25} a^{5} + \frac{1}{50} a^{4} + \frac{2}{5} a^{3} + \frac{4}{25} a^{2} + \frac{7}{50} a + \frac{12}{25}$, $\frac{1}{250} a^{14} - \frac{1}{250} a^{12} + \frac{7}{250} a^{11} + \frac{97}{250} a^{9} + \frac{1}{250} a^{8} - \frac{42}{125} a^{7} - \frac{11}{250} a^{6} - \frac{103}{250} a^{5} + \frac{7}{25} a^{4} + \frac{107}{250} a^{3} + \frac{91}{250} a^{2} - \frac{12}{25} a + \frac{119}{250}$, $\frac{1}{250} a^{15} - \frac{1}{250} a^{13} + \frac{1}{125} a^{12} + \frac{2}{25} a^{11} + \frac{17}{250} a^{10} + \frac{28}{125} a^{9} + \frac{58}{125} a^{8} + \frac{9}{250} a^{7} + \frac{6}{125} a^{6} + \frac{1}{5} a^{5} + \frac{107}{250} a^{4} + \frac{43}{125} a^{3} + \frac{1}{5} a^{2} - \frac{101}{250} a + \frac{19}{50}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{15}$, which has order $15$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 195050.432151 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1385:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2048
The 71 conjugacy class representatives for t16n1385 are not computed
Character table for t16n1385 is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), 4.4.4913.1, 8.0.428417712181.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.4.2$x^{8} + 25 x^{4} - 250 x^{2} + 1250$$2$$4$$4$$C_8$$[\ ]_{2}^{4}$
5.8.0.1$x^{8} + x^{2} - 2 x + 3$$1$$8$$0$$C_8$$[\ ]^{8}$
$17$17.4.3.1$x^{4} - 17$$4$$1$$3$$C_4$$[\ ]_{4}$
17.4.3.1$x^{4} - 17$$4$$1$$3$$C_4$$[\ ]_{4}$
17.8.6.1$x^{8} - 119 x^{4} + 23409$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
17749Data not computed