Normalized defining polynomial
\( x^{16} - 8 x^{15} + 12 x^{14} + 32 x^{13} - 22 x^{12} - 456 x^{11} + 2284 x^{10} - 7040 x^{9} + 17271 x^{8} - 37448 x^{7} + 68860 x^{6} - 104280 x^{5} + 130226 x^{4} - 114520 x^{3} + 65712 x^{2} - 24824 x + 8395 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11447545997288281555215581184=2^{52}\cdot 3^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} + \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{9} a^{2} - \frac{1}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{9} + \frac{1}{9} a^{3} + \frac{1}{9}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{10} + \frac{1}{9} a^{4} + \frac{1}{9} a$, $\frac{1}{185094729} a^{14} + \frac{1934837}{185094729} a^{13} + \frac{3785203}{185094729} a^{12} - \frac{5554949}{185094729} a^{11} - \frac{23229295}{185094729} a^{10} - \frac{22233587}{185094729} a^{9} - \frac{1402535}{61698243} a^{8} + \frac{2243188}{20566081} a^{7} + \frac{1958697}{20566081} a^{6} + \frac{55315474}{185094729} a^{5} - \frac{56887552}{185094729} a^{4} - \frac{62766656}{185094729} a^{3} - \frac{49676591}{185094729} a^{2} + \frac{18539948}{185094729} a - \frac{50976347}{185094729}$, $\frac{1}{24440816302954553647521} a^{15} + \frac{20587946468714}{8146938767651517882507} a^{14} + \frac{5015327598395895235}{520017368147969226543} a^{13} + \frac{113626745796934122195}{2715646255883839294169} a^{12} + \frac{912079298116558699865}{24440816302954553647521} a^{11} - \frac{1156389541291464073288}{8146938767651517882507} a^{10} - \frac{1148052656068496332334}{24440816302954553647521} a^{9} + \frac{44500872115613120356}{2715646255883839294169} a^{8} + \frac{294870368446319037619}{8146938767651517882507} a^{7} - \frac{709936799472074107838}{24440816302954553647521} a^{6} + \frac{1657260338049263231387}{8146938767651517882507} a^{5} - \frac{6386356094354793539338}{24440816302954553647521} a^{4} + \frac{1676887576229310412882}{8146938767651517882507} a^{3} - \frac{5757555995143733041750}{24440816302954553647521} a^{2} + \frac{1004834619018082358033}{2715646255883839294169} a + \frac{5033202501652361138806}{24440816302954553647521}$
Class group and class number
$C_{2}\times C_{36}$, which has order $72$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1249717.03243 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\GL(2,Z/4)$ (as 16T193):
| A solvable group of order 96 |
| The 14 conjugacy class representatives for $\GL(2,Z/4)$ |
| Character table for $\GL(2,Z/4)$ |
Intermediate fields
| \(\Q(\sqrt{6}) \), 4.4.497664.1, 4.0.27648.1, 8.8.2229025112064.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.12.23.50 | $x^{12} - 9 x^{11} + 6 x^{9} + 9 x^{8} + 3 x^{6} + 9 x^{5} + 9 x^{4} + 3 x^{3} - 9 x^{2} + 9 x + 3$ | $12$ | $1$ | $23$ | $(C_6\times C_2):C_2$ | $[5/2]_{4}^{2}$ | |