Normalized defining polynomial
\( x^{16} - x^{15} + 133 x^{14} - 103 x^{13} + 6081 x^{12} - 5825 x^{11} + 129015 x^{10} - 395763 x^{9} + 2239826 x^{8} - 15443166 x^{7} + 42987317 x^{6} - 243806269 x^{5} + 1187076972 x^{4} - 3260668645 x^{3} + 8997200644 x^{2} - 18857570867 x + 15497228633 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11445391768549949624817238631584321=13^{12}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $134.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{141311} a^{14} + \frac{30345}{141311} a^{13} + \frac{47075}{141311} a^{12} - \frac{42168}{141311} a^{11} + \frac{875}{141311} a^{10} - \frac{49301}{141311} a^{9} + \frac{23679}{141311} a^{8} + \frac{12350}{141311} a^{7} - \frac{45557}{141311} a^{6} - \frac{28292}{141311} a^{5} - \frac{15022}{141311} a^{4} + \frac{52730}{141311} a^{3} + \frac{1701}{141311} a^{2} - \frac{27165}{141311} a - \frac{35154}{141311}$, $\frac{1}{714422766695225015424142786766545632319637286960802275244077991896937} a^{15} + \frac{299309828185863915452844443423887867133947268154081435172858078}{714422766695225015424142786766545632319637286960802275244077991896937} a^{14} - \frac{294947335027921396337467168800957903800502898578146441169452041234219}{714422766695225015424142786766545632319637286960802275244077991896937} a^{13} - \frac{243002037282467206817951504612498466353802217194509742655519375342863}{714422766695225015424142786766545632319637286960802275244077991896937} a^{12} - \frac{50605342040176721515488196378828540207019090229227612907533976339152}{714422766695225015424142786766545632319637286960802275244077991896937} a^{11} + \frac{215088558031875318380223404813683645611286484334226362249874251836900}{714422766695225015424142786766545632319637286960802275244077991896937} a^{10} + \frac{322221375630073478306029221118841201211538704930379816291609039735190}{714422766695225015424142786766545632319637286960802275244077991896937} a^{9} - \frac{224627052003957260356207862113766236917092762472269791508090298395511}{714422766695225015424142786766545632319637286960802275244077991896937} a^{8} + \frac{112120847513900269354047502344238779566737323372782303892793983292157}{714422766695225015424142786766545632319637286960802275244077991896937} a^{7} - \frac{158993141509573172017946148307045521612299962695567839886610655064991}{714422766695225015424142786766545632319637286960802275244077991896937} a^{6} + \frac{951158802322693612568033211840129756965689183725754249151723130035}{714422766695225015424142786766545632319637286960802275244077991896937} a^{5} + \frac{281251906750256047067226021693663691372669587403985526399568461176911}{714422766695225015424142786766545632319637286960802275244077991896937} a^{4} + \frac{285945134258461851858748434773816446633505568841068148830582188580031}{714422766695225015424142786766545632319637286960802275244077991896937} a^{3} - \frac{281176274021501850095021237673277792305719589382872873391813520218767}{714422766695225015424142786766545632319637286960802275244077991896937} a^{2} - \frac{330684322583581673424563653893863458289688655655545654158333096177987}{714422766695225015424142786766545632319637286960802275244077991896937} a + \frac{82414037848429016293632707118683134618925699526758575042449666700962}{714422766695225015424142786766545632319637286960802275244077991896937}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{28}\times C_{28}$, which has order $100352$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 165651.191156 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $Q_{16}$ |
| Character table for $Q_{16}$ |
Intermediate fields
| \(\Q(\sqrt{689}) \), \(\Q(\sqrt{53}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{13}, \sqrt{53})\), 4.4.36517.1 x2, 4.4.8957.1 x2, 8.8.225360027841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $53$ | 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |