Normalized defining polynomial
\( x^{16} + 33 x^{14} - 46 x^{13} + 795 x^{12} - 794 x^{11} + 9142 x^{10} + 8403 x^{9} + 54723 x^{8} + 128673 x^{7} + 210951 x^{6} + 849452 x^{5} + 8132377 x^{4} + 935100 x^{3} + 27985873 x^{2} - 64315489 x + 61062797 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11445391768549949624817238631584321=13^{12}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $134.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{780} a^{12} - \frac{17}{260} a^{11} + \frac{8}{195} a^{10} - \frac{6}{65} a^{9} - \frac{2}{65} a^{8} - \frac{19}{52} a^{7} + \frac{101}{780} a^{6} - \frac{1}{10} a^{5} - \frac{89}{780} a^{4} - \frac{133}{780} a^{3} - \frac{21}{260} a^{2} - \frac{371}{780} a - \frac{181}{780}$, $\frac{1}{22620} a^{13} + \frac{1}{7540} a^{12} + \frac{1369}{11310} a^{11} - \frac{699}{3770} a^{10} + \frac{583}{3770} a^{9} - \frac{657}{7540} a^{8} - \frac{469}{22620} a^{7} + \frac{1871}{3770} a^{6} + \frac{2329}{22620} a^{5} - \frac{4939}{22620} a^{4} + \frac{401}{1508} a^{3} - \frac{4163}{22620} a^{2} - \frac{119}{348} a + \frac{648}{1885}$, $\frac{1}{22620} a^{14} + \frac{1}{7540} a^{12} + \frac{184}{1885} a^{11} - \frac{823}{5655} a^{10} + \frac{73}{580} a^{9} + \frac{752}{5655} a^{8} + \frac{3051}{7540} a^{7} + \frac{23}{52} a^{6} + \frac{2108}{5655} a^{5} + \frac{829}{5655} a^{4} - \frac{171}{377} a^{3} - \frac{1117}{5655} a^{2} + \frac{139}{1740} a - \frac{2471}{11310}$, $\frac{1}{2456660111500962946388652290023562325088714380} a^{15} - \frac{1225432840565185635440697331240184625029}{818886703833654315462884096674520775029571460} a^{14} - \frac{4989294082129533456949108409937074404491}{818886703833654315462884096674520775029571460} a^{13} - \frac{11040776121144102213693815048138444780096}{122833005575048147319432614501178116254435719} a^{12} + \frac{476606131719267429727697478550995624638896703}{2456660111500962946388652290023562325088714380} a^{11} - \frac{556461822043884132092896801790429101347482243}{2456660111500962946388652290023562325088714380} a^{10} - \frac{473755529690035110001585841445149075697474421}{2456660111500962946388652290023562325088714380} a^{9} - \frac{130763664502693247386237698759894909110997197}{818886703833654315462884096674520775029571460} a^{8} - \frac{1730582145234349908559095307959214548356743}{62991284910281101189452622821116982694582420} a^{7} - \frac{7502449734332508086749453488894809750445249}{204721675958413578865721024168630193757392865} a^{6} + \frac{58895260032370252914415731234645056309341556}{122833005575048147319432614501178116254435719} a^{5} - \frac{979069792719085121191512561254496576807504277}{2456660111500962946388652290023562325088714380} a^{4} - \frac{247651448809756405515539459432390902378331247}{818886703833654315462884096674520775029571460} a^{3} + \frac{485087636595983116777335947003096380139100389}{1228330055750481473194326145011781162544357190} a^{2} + \frac{142709093814763679656695258426814828095519299}{1228330055750481473194326145011781162544357190} a + \frac{189010025492816950760504488647269112137714317}{2456660111500962946388652290023562325088714380}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{16}\times C_{16}$, which has order $4096$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8979144.94 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $53$ | 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |