Normalized defining polynomial
\( x^{16} - 4 x^{15} + 93 x^{14} - 308 x^{13} + 3119 x^{12} - 10176 x^{11} + 51702 x^{10} - 162303 x^{9} + 522505 x^{8} - 1351737 x^{7} + 3249693 x^{6} - 6525662 x^{5} + 11390353 x^{4} - 16782028 x^{3} + 20319485 x^{2} - 16382503 x + 6828071 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11445391768549949624817238631584321=13^{12}\cdot 53^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $134.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{18648} a^{12} - \frac{1}{6216} a^{11} + \frac{599}{4662} a^{10} - \frac{101}{9324} a^{9} - \frac{143}{3108} a^{8} + \frac{5555}{18648} a^{7} - \frac{199}{18648} a^{6} - \frac{725}{9324} a^{5} - \frac{3349}{18648} a^{4} - \frac{159}{2072} a^{3} - \frac{7391}{18648} a^{2} - \frac{1465}{18648} a + \frac{3445}{18648}$, $\frac{1}{18648} a^{13} + \frac{341}{2664} a^{11} - \frac{167}{1332} a^{10} - \frac{61}{777} a^{9} + \frac{2981}{18648} a^{8} - \frac{1091}{9324} a^{7} + \frac{7277}{18648} a^{6} - \frac{7699}{18648} a^{5} - \frac{359}{3108} a^{4} - \frac{295}{2331} a^{3} + \frac{2167}{9324} a^{2} - \frac{475}{9324} a - \frac{2771}{6216}$, $\frac{1}{18648} a^{14} - \frac{643}{2664} a^{11} + \frac{1055}{4662} a^{10} + \frac{307}{18648} a^{9} + \frac{977}{4662} a^{8} - \frac{388}{2331} a^{7} + \frac{557}{9324} a^{6} - \frac{26}{2331} a^{5} - \frac{921}{2072} a^{4} - \frac{1777}{18648} a^{3} - \frac{8965}{18648} a^{2} - \frac{3929}{9324} a - \frac{1253}{2664}$, $\frac{1}{11379817578731583112282140696} a^{15} - \frac{27772355667575285851975}{2844954394682895778070535174} a^{14} - \frac{142312442462114368810399}{11379817578731583112282140696} a^{13} - \frac{39292537583328989201833}{3793272526243861037427380232} a^{12} - \frac{2410026716408922082326240899}{11379817578731583112282140696} a^{11} - \frac{2571019287695638336284626455}{11379817578731583112282140696} a^{10} + \frac{18547702494300691640395189}{474159065780482629678422529} a^{9} + \frac{239140188130007551272875469}{1264424175414620345809126744} a^{8} - \frac{115191447622243473507883207}{270948037588847216959098588} a^{7} + \frac{1968233970208223440974214615}{11379817578731583112282140696} a^{6} + \frac{130731526173555615314318293}{2844954394682895778070535174} a^{5} + \frac{369205143290947405258400323}{11379817578731583112282140696} a^{4} - \frac{118464975862323237929925523}{11379817578731583112282140696} a^{3} + \frac{1333489807713327116465212009}{5689908789365791556141070348} a^{2} + \frac{215841549054564865644565933}{1264424175414620345809126744} a + \frac{1306087104082233260313509339}{3793272526243861037427380232}$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{8}\times C_{8}$, which has order $2048$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8979144.94 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $53$ | 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |