Normalized defining polynomial
\( x^{16} + 1220 x^{14} + 508130 x^{12} + 98978600 x^{10} + 10034792800 x^{8} + 543392514000 x^{6} + 15315089013000 x^{4} + 201872361780000 x^{2} + 908425628010000 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11400342036779277121730973270016000000000000=2^{44}\cdot 5^{12}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $490.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4880=2^{4}\cdot 5\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4880}(1,·)$, $\chi_{4880}(2307,·)$, $\chi_{4880}(2561,·)$, $\chi_{4880}(2441,·)$, $\chi_{4880}(843,·)$, $\chi_{4880}(3283,·)$, $\chi_{4880}(987,·)$, $\chi_{4880}(609,·)$, $\chi_{4880}(3427,·)$, $\chi_{4880}(4747,·)$, $\chi_{4880}(3049,·)$, $\chi_{4880}(1963,·)$, $\chi_{4880}(2929,·)$, $\chi_{4880}(4403,·)$, $\chi_{4880}(489,·)$, $\chi_{4880}(121,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{610} a^{4}$, $\frac{1}{610} a^{5}$, $\frac{1}{610} a^{6}$, $\frac{1}{1830} a^{7} + \frac{1}{1830} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{5581500} a^{8} + \frac{1}{9150} a^{6} + \frac{2}{4575} a^{4} + \frac{4}{15} a^{2} + \frac{2}{5}$, $\frac{1}{5581500} a^{9} + \frac{1}{9150} a^{7} + \frac{2}{4575} a^{5} + \frac{4}{15} a^{3} + \frac{2}{5} a$, $\frac{1}{16744500} a^{10} - \frac{1}{16744500} a^{8} + \frac{4}{13725} a^{6} + \frac{11}{27450} a^{4} + \frac{7}{45} a^{2} + \frac{1}{5}$, $\frac{1}{50233500} a^{11} - \frac{1}{12558375} a^{9} + \frac{1}{16470} a^{7} - \frac{1}{82350} a^{5} - \frac{10}{27} a^{3} + \frac{4}{15} a$, $\frac{1}{32358411360000} a^{12} + \frac{169}{6630822000} a^{10} - \frac{419}{6630822000} a^{8} + \frac{1321}{43480800} a^{6} - \frac{5971}{10870200} a^{4} + \frac{421}{1980} a^{2} - \frac{871}{1760}$, $\frac{1}{97075234080000} a^{13} + \frac{169}{19892466000} a^{11} - \frac{419}{19892466000} a^{9} + \frac{1321}{130442400} a^{7} - \frac{5971}{32610600} a^{5} - \frac{1559}{5940} a^{3} - \frac{871}{5280} a$, $\frac{1}{392281020917280000} a^{14} + \frac{5639}{392281020917280000} a^{12} - \frac{46169}{20096363776500} a^{10} - \frac{7959121}{160770910212000} a^{8} + \frac{412697459}{527117738400} a^{6} + \frac{8627237}{14642159400} a^{4} + \frac{7419409}{21336480} a^{2} + \frac{152315}{474144}$, $\frac{1}{1176843062751840000} a^{15} + \frac{5639}{1176843062751840000} a^{13} - \frac{46169}{60289091329500} a^{11} - \frac{36763369}{482312730636000} a^{9} + \frac{355088963}{1581353215200} a^{7} - \frac{21777247}{43926478200} a^{5} - \frac{19606799}{64009440} a^{3} - \frac{2557433}{7112160} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{74}\times C_{1856290}$, which has order $1098923680$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2927643.5650334265 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.7 | $x^{8} + 2 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ |
| 2.8.22.7 | $x^{8} + 2 x^{4} + 16 x + 4$ | $4$ | $2$ | $22$ | $C_4\times C_2$ | $[3, 4]^{2}$ | |
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $61$ | 61.8.6.2 | $x^{8} + 183 x^{4} + 14884$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 61.8.6.2 | $x^{8} + 183 x^{4} + 14884$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |