Properties

Label 16.0.11352029626...1824.3
Degree $16$
Signature $[0, 8]$
Discriminant $2^{79}\cdot 3^{8}\cdot 17^{15}$
Root discriminant $755.86$
Ramified primes $2, 3, 17$
Class number $2095648768$ (GRH)
Class group $[2, 2, 2, 2, 2, 2, 2, 2, 8186128]$ (GRH)
Galois group $C_{16}$ (as 16T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![359229669714, 0, 1110011465088, 0, 378786592080, 0, 43864874784, 0, 2007605412, 0, 33547392, 0, 246024, 0, 816, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 816*x^14 + 246024*x^12 + 33547392*x^10 + 2007605412*x^8 + 43864874784*x^6 + 378786592080*x^4 + 1110011465088*x^2 + 359229669714)
 
gp: K = bnfinit(x^16 + 816*x^14 + 246024*x^12 + 33547392*x^10 + 2007605412*x^8 + 43864874784*x^6 + 378786592080*x^4 + 1110011465088*x^2 + 359229669714, 1)
 

Normalized defining polynomial

\( x^{16} + 816 x^{14} + 246024 x^{12} + 33547392 x^{10} + 2007605412 x^{8} + 43864874784 x^{6} + 378786592080 x^{4} + 1110011465088 x^{2} + 359229669714 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(11352029626874238391016464929669692733284941824=2^{79}\cdot 3^{8}\cdot 17^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $755.86$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(3264=2^{6}\cdot 3\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{3264}(1,·)$, $\chi_{3264}(2051,·)$, $\chi_{3264}(2569,·)$, $\chi_{3264}(2315,·)$, $\chi_{3264}(3217,·)$, $\chi_{3264}(2387,·)$, $\chi_{3264}(25,·)$, $\chi_{3264}(923,·)$, $\chi_{3264}(2209,·)$, $\chi_{3264}(227,·)$, $\chi_{3264}(2089,·)$, $\chi_{3264}(2411,·)$, $\chi_{3264}(625,·)$, $\chi_{3264}(1523,·)$, $\chi_{3264}(3001,·)$, $\chi_{3264}(2171,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{27} a^{4} - \frac{1}{9} a^{2}$, $\frac{1}{81} a^{5} + \frac{1}{27} a^{3} - \frac{2}{9} a$, $\frac{1}{243} a^{6} + \frac{1}{81} a^{4} - \frac{2}{27} a^{2}$, $\frac{1}{729} a^{7} - \frac{1}{27} a^{3} + \frac{2}{27} a$, $\frac{1}{72171} a^{8} + \frac{14}{8019} a^{6} + \frac{49}{2673} a^{4} + \frac{377}{2673} a^{2} + \frac{4}{11}$, $\frac{1}{72171} a^{9} + \frac{1}{2673} a^{7} + \frac{16}{2673} a^{5} + \frac{80}{2673} a^{3} - \frac{46}{297} a$, $\frac{1}{1948617} a^{10} + \frac{2}{649539} a^{8} + \frac{83}{72171} a^{6} + \frac{734}{72171} a^{4} + \frac{2173}{24057} a^{2} + \frac{3}{11}$, $\frac{1}{91584999} a^{11} - \frac{79}{30528333} a^{9} + \frac{434}{3392037} a^{7} - \frac{10282}{3392037} a^{5} + \frac{42025}{1130679} a^{3} - \frac{139}{423} a$, $\frac{1}{7418384919} a^{12} - \frac{173}{2472794973} a^{10} - \frac{2693}{824264991} a^{8} + \frac{225188}{274754997} a^{6} + \frac{1088480}{91584999} a^{4} + \frac{2549981}{30528333} a^{2} - \frac{64}{297}$, $\frac{1}{7418384919} a^{13} - \frac{1}{224799543} a^{11} - \frac{370}{74933181} a^{9} + \frac{14728}{24977727} a^{7} - \frac{2636}{8325909} a^{5} + \frac{1226279}{30528333} a^{3} - \frac{176}{423} a$, $\frac{1}{3205873759331000637} a^{14} + \frac{1222780}{32382563225565663} a^{12} - \frac{2169299915}{13192896128934159} a^{10} - \frac{313613708678}{118736065160407431} a^{8} + \frac{17469983895907}{13192896128934159} a^{6} - \frac{25726487717594}{1465877347659351} a^{4} + \frac{333585168253198}{4397632042978053} a^{2} - \frac{21292631108}{42783099777}$, $\frac{1}{3205873759331000637} a^{15} + \frac{1222780}{32382563225565663} a^{13} - \frac{8537300}{13192896128934159} a^{11} + \frac{13093598710}{118736065160407431} a^{9} + \frac{3304888497013}{13192896128934159} a^{7} + \frac{6334907963776}{1465877347659351} a^{5} - \frac{77307611377817}{4397632042978053} a^{3} - \frac{5074249084}{2010805689519} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{8186128}$, which has order $2095648768$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1731702170.9408467 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{16}$ (as 16T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 16
The 16 conjugacy class representatives for $C_{16}$
Character table for $C_{16}$

Intermediate fields

\(\Q(\sqrt{34}) \), 4.4.10061824.2, 8.8.881195590409519104.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ $16$ ${\href{/LocalNumberField/11.1.0.1}{1} }^{16}$ $16$ R $16$ $16$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ $16$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ $16$ $16$ ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ $16$ $16$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
17Data not computed