Normalized defining polynomial
\( x^{16} + 816 x^{14} + 138312 x^{12} + 10046592 x^{10} + 366177348 x^{8} + 6765454368 x^{6} + 57355398864 x^{4} + 173471860224 x^{2} + 127157756850 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11352029626874238391016464929669692733284941824=2^{79}\cdot 3^{8}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $755.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3264=2^{6}\cdot 3\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3264}(1,·)$, $\chi_{3264}(1091,·)$, $\chi_{3264}(2185,·)$, $\chi_{3264}(11,·)$, $\chi_{3264}(2257,·)$, $\chi_{3264}(2579,·)$, $\chi_{3264}(2905,·)$, $\chi_{3264}(1115,·)$, $\chi_{3264}(2209,·)$, $\chi_{3264}(1187,·)$, $\chi_{3264}(2473,·)$, $\chi_{3264}(1451,·)$, $\chi_{3264}(1585,·)$, $\chi_{3264}(1331,·)$, $\chi_{3264}(121,·)$, $\chi_{3264}(1979,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{9} a^{4}$, $\frac{1}{45} a^{5} + \frac{1}{5} a$, $\frac{1}{135} a^{6} + \frac{1}{15} a^{2}$, $\frac{1}{135} a^{7} + \frac{1}{15} a^{3}$, $\frac{1}{405} a^{8} + \frac{1}{45} a^{4}$, $\frac{1}{405} a^{9} - \frac{1}{5} a$, $\frac{1}{30375} a^{10} - \frac{1}{2025} a^{8} + \frac{2}{3375} a^{6} + \frac{1}{25} a^{4} + \frac{1}{375} a^{2} + \frac{2}{5}$, $\frac{1}{30375} a^{11} - \frac{1}{2025} a^{9} + \frac{2}{3375} a^{7} - \frac{1}{225} a^{5} + \frac{1}{375} a^{3}$, $\frac{1}{85384125} a^{12} - \frac{278}{28461375} a^{10} + \frac{8842}{9487125} a^{8} + \frac{2308}{1054125} a^{6} - \frac{3951}{117125} a^{4} + \frac{234}{117125} a^{2} - \frac{156}{4685}$, $\frac{1}{85384125} a^{13} - \frac{278}{28461375} a^{11} + \frac{8842}{9487125} a^{9} + \frac{2308}{1054125} a^{7} + \frac{11291}{1054125} a^{5} + \frac{234}{117125} a^{3} + \frac{1718}{4685} a$, $\frac{1}{141607070507535890625} a^{14} - \frac{4996983073}{3146823789056353125} a^{12} - \frac{69759604131464}{5244706315093921875} a^{10} + \frac{72149550887338}{116549029224309375} a^{8} - \frac{4320850000325237}{1748235438364640625} a^{6} - \frac{625050966061868}{38849676408103125} a^{4} + \frac{2226314537627906}{194248382040515625} a^{2} + \frac{1087800270283627}{2589978427206875}$, $\frac{1}{21382667646637919484375} a^{15} - \frac{4769273654444}{1425511176442527965625} a^{13} - \frac{4478735246400517}{2375851960737546609375} a^{11} - \frac{3965563242417587}{17598903412870715625} a^{9} + \frac{392075210077794388}{263983551193060734375} a^{7} - \frac{176766749316162829}{17598903412870715625} a^{5} - \frac{418526293358415448}{9777168562705953125} a^{3} - \frac{148012586424846498}{391086742508238125} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{434975504}$, which has order $3479804032$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 241880713.68251026 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{34}) \), 4.4.10061824.1, 8.8.881195590409519104.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.1.0.1}{1} }^{16}$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | R | $16$ | $16$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 17 | Data not computed | ||||||