Normalized defining polynomial
\( x^{16} - x^{15} + 375 x^{14} - 375 x^{13} + 57971 x^{12} - 57971 x^{11} + 4764387 x^{10} - 4764387 x^{9} + 223793747 x^{8} - 223793747 x^{7} + 6006168851 x^{6} - 6006168851 x^{5} + 86959420307 x^{4} - 86959420307 x^{3} + 595808429459 x^{2} - 595808429459 x + 1528698279571 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11268182541757132036763060346765233=17^{15}\cdot 89^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $134.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1513=17\cdot 89\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1513}(1,·)$, $\chi_{1513}(1158,·)$, $\chi_{1513}(711,·)$, $\chi_{1513}(713,·)$, $\chi_{1513}(266,·)$, $\chi_{1513}(268,·)$, $\chi_{1513}(1423,·)$, $\chi_{1513}(533,·)$, $\chi_{1513}(535,·)$, $\chi_{1513}(88,·)$, $\chi_{1513}(1069,·)$, $\chi_{1513}(622,·)$, $\chi_{1513}(177,·)$, $\chi_{1513}(179,·)$, $\chi_{1513}(889,·)$, $\chi_{1513}(446,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{170982561751} a^{9} + \frac{14616106291}{170982561751} a^{8} + \frac{198}{170982561751} a^{7} + \frac{7696280951}{170982561751} a^{6} + \frac{13068}{170982561751} a^{5} + \frac{81330328803}{170982561751} a^{4} + \frac{319440}{170982561751} a^{3} - \frac{73232756476}{170982561751} a^{2} + \frac{2108304}{170982561751} a - \frac{30407518558}{170982561751}$, $\frac{1}{170982561751} a^{10} + \frac{220}{170982561751} a^{8} + \frac{20410785100}{170982561751} a^{7} + \frac{16940}{170982561751} a^{6} + \frac{65574793882}{170982561751} a^{5} + \frac{532400}{170982561751} a^{4} - \frac{21412618959}{170982561751} a^{3} + \frac{5856400}{170982561751} a^{2} - \frac{64556246798}{170982561751} a + \frac{10307264}{170982561751}$, $\frac{1}{170982561751} a^{11} + \frac{53536074349}{170982561751} a^{8} - \frac{26620}{170982561751} a^{7} + \frac{82218602172}{170982561751} a^{6} - \frac{2342560}{170982561751} a^{5} + \frac{39084028236}{170982561751} a^{4} - \frac{64420400}{170982561751} a^{3} - \frac{25710626672}{170982561751} a^{2} - \frac{453519616}{170982561751} a + \frac{21334174471}{170982561751}$, $\frac{1}{170982561751} a^{12} - \frac{31944}{170982561751} a^{8} + \frac{82994709632}{170982561751} a^{7} - \frac{3279584}{170982561751} a^{6} - \frac{80675441155}{170982561751} a^{5} - \frac{115956720}{170982561751} a^{4} - \frac{84456897963}{170982561751} a^{3} - \frac{1360558848}{170982561751} a^{2} + \frac{78163444503}{170982561751} a - \frac{2494357888}{170982561751}$, $\frac{1}{170982561751} a^{13} + \frac{26517927355}{170982561751} a^{8} + \frac{3045328}{170982561751} a^{7} + \frac{67382021402}{170982561751} a^{6} + \frac{301487472}{170982561751} a^{5} + \frac{22523140375}{170982561751} a^{4} + \frac{8843632512}{170982561751} a^{3} - \frac{56582109410}{170982561751} a^{2} + \frac{64853305088}{170982561751} a + \frac{14160490679}{170982561751}$, $\frac{1}{170982561751} a^{14} + \frac{3875872}{170982561751} a^{8} - \frac{53690742358}{170982561751} a^{7} + \frac{447663216}{170982561751} a^{6} + \frac{67901134512}{170982561751} a^{5} + \frac{16883298432}{170982561751} a^{4} + \frac{45760439183}{170982561751} a^{3} + \frac{35368863529}{170982561751} a^{2} + \frac{39887576739}{170982561751} a + \frac{47154707026}{170982561751}$, $\frac{1}{170982561751} a^{15} + \frac{73511411712}{170982561751} a^{8} - \frac{319759440}{170982561751} a^{7} + \frac{562026351}{1692896651} a^{6} - \frac{33766596864}{170982561751} a^{5} - \frac{53797893919}{170982561751} a^{4} - \frac{5861755894}{170982561751} a^{3} + \frac{31683044004}{170982561751} a^{2} + \frac{82801229986}{170982561751} a - \frac{65308105459}{170982561751}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{370658}$, which has order $2965264$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.01221338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $89$ | 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |