Normalized defining polynomial
\( x^{16} - 4 x^{15} + 52 x^{14} - 191 x^{13} + 1004 x^{12} - 4675 x^{11} + 10357 x^{10} - 54485 x^{9} + 114330 x^{8} - 122429 x^{7} + 565267 x^{6} + 1246730 x^{5} - 2654985 x^{4} - 4063001 x^{3} + 7510735 x^{2} - 4096578 x + 4962179 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1125664559289128829386632937086249=13^{8}\cdot 53^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $116.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{611} a^{14} - \frac{119}{611} a^{13} + \frac{190}{611} a^{12} + \frac{230}{611} a^{11} - \frac{14}{47} a^{10} + \frac{48}{611} a^{9} + \frac{118}{611} a^{8} + \frac{225}{611} a^{7} + \frac{301}{611} a^{6} + \frac{187}{611} a^{5} + \frac{139}{611} a^{4} + \frac{108}{611} a^{3} + \frac{290}{611} a^{2} + \frac{62}{611} a + \frac{14}{611}$, $\frac{1}{14339903508679933085061818650887103840682995681390783} a^{15} + \frac{1068407742042885501540864123162136875518606215910}{14339903508679933085061818650887103840682995681390783} a^{14} + \frac{3812119168844707324654247364370436412497948229244421}{14339903508679933085061818650887103840682995681390783} a^{13} - \frac{5503384013615271396700074668335933656482006208195031}{14339903508679933085061818650887103840682995681390783} a^{12} - \frac{2491209705644478868775982527413462801636481018442941}{14339903508679933085061818650887103840682995681390783} a^{11} + \frac{5374405786914499604695365150744649681770699836657168}{14339903508679933085061818650887103840682995681390783} a^{10} + \frac{3076100470564625645650413325300946770117855034509076}{14339903508679933085061818650887103840682995681390783} a^{9} + \frac{3931173744428407446024350040409353864377821808039905}{14339903508679933085061818650887103840682995681390783} a^{8} - \frac{4336809269767750717089978590991142530265259172086424}{14339903508679933085061818650887103840682995681390783} a^{7} + \frac{2860308631615828338230384018529783112200142775709819}{14339903508679933085061818650887103840682995681390783} a^{6} + \frac{3667167889794193607934681578639742555472453273394875}{14339903508679933085061818650887103840682995681390783} a^{5} + \frac{3954310125528170012191762401634336895794992742794250}{14339903508679933085061818650887103840682995681390783} a^{4} - \frac{2016307481293557616553773897769794545617407204051}{23469563843993343838071716286230939182787226974453} a^{3} - \frac{1135015870963298261150459892348276052470852912506839}{14339903508679933085061818650887103840682995681390783} a^{2} - \frac{4863505304602616607046710228631102263885320226154886}{14339903508679933085061818650887103840682995681390783} a - \frac{4798296530812077238485007519828836849571170442001638}{14339903508679933085061818650887103840682995681390783}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 445433494.742 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1263 |
| Character table for t16n1263 is not computed |
Intermediate fields
| \(\Q(\sqrt{53}) \), 4.0.148877.1, 8.0.48695101400413.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $53$ | 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |