Normalized defining polynomial
\( x^{16} - 4 x^{15} + 34 x^{14} - 22 x^{13} - 267 x^{12} + 86 x^{11} + 7067 x^{10} + 6134 x^{9} - 14475 x^{8} - 79428 x^{7} + 521094 x^{6} + 872096 x^{5} + 1808447 x^{4} - 6469998 x^{3} + 1831385 x^{2} + 4379232 x + 65951899 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1125664559289128829386632937086249=13^{8}\cdot 53^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $116.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{106} a^{8} - \frac{1}{53} a^{7} + \frac{15}{106} a^{6} + \frac{19}{106} a^{5} - \frac{49}{106} a^{4} - \frac{11}{53} a^{3} - \frac{37}{106} a^{2} - \frac{39}{106} a - \frac{17}{106}$, $\frac{1}{106} a^{9} + \frac{11}{106} a^{7} + \frac{49}{106} a^{6} - \frac{11}{106} a^{5} - \frac{7}{53} a^{4} + \frac{25}{106} a^{3} - \frac{7}{106} a^{2} + \frac{11}{106} a - \frac{17}{53}$, $\frac{1}{106} a^{10} - \frac{35}{106} a^{7} + \frac{18}{53} a^{6} - \frac{11}{106} a^{5} + \frac{17}{53} a^{4} + \frac{23}{106} a^{3} - \frac{3}{53} a^{2} - \frac{29}{106} a - \frac{25}{106}$, $\frac{1}{106} a^{11} - \frac{17}{53} a^{7} - \frac{8}{53} a^{6} - \frac{43}{106} a^{5} + \frac{2}{53} a^{4} - \frac{17}{53} a^{3} - \frac{26}{53} a^{2} - \frac{6}{53} a + \frac{41}{106}$, $\frac{1}{106} a^{12} + \frac{11}{53} a^{7} + \frac{43}{106} a^{6} + \frac{7}{53} a^{5} - \frac{2}{53} a^{4} + \frac{24}{53} a^{3} + \frac{1}{53} a^{2} - \frac{13}{106} a - \frac{24}{53}$, $\frac{1}{106} a^{13} - \frac{19}{106} a^{7} + \frac{1}{53} a^{6} + \frac{1}{53} a^{5} - \frac{20}{53} a^{4} - \frac{22}{53} a^{3} - \frac{47}{106} a^{2} - \frac{19}{53} a - \frac{25}{53}$, $\frac{1}{34874} a^{14} + \frac{2}{2491} a^{13} + \frac{5}{2491} a^{12} - \frac{74}{17437} a^{11} - \frac{61}{34874} a^{10} + \frac{65}{34874} a^{9} + \frac{6}{2491} a^{8} - \frac{2812}{17437} a^{7} + \frac{4674}{17437} a^{6} + \frac{15739}{34874} a^{5} + \frac{13889}{34874} a^{4} + \frac{10263}{34874} a^{3} - \frac{7825}{17437} a^{2} - \frac{17151}{34874} a + \frac{8579}{17437}$, $\frac{1}{1365067399280854486587753481369786101314} a^{15} + \frac{6718134893991288852947679371805569}{1365067399280854486587753481369786101314} a^{14} + \frac{302224453246000504641090326204058149}{195009628468693498083964783052826585902} a^{13} + \frac{2308332246097338471870413691626523817}{1365067399280854486587753481369786101314} a^{12} + \frac{199851121444618490527716981851932623}{105005184560065729737519498566906623178} a^{11} - \frac{2249519510375019166129819184276458229}{1365067399280854486587753481369786101314} a^{10} - \frac{1483631473716041401401417619327870701}{1365067399280854486587753481369786101314} a^{9} - \frac{1998497992390820091466830099480131872}{682533699640427243293876740684893050657} a^{8} + \frac{230629624193586635106077548360683295734}{682533699640427243293876740684893050657} a^{7} + \frac{82582550126175023928751435164343313157}{682533699640427243293876740684893050657} a^{6} - \frac{593345715599616530393606915532540026785}{1365067399280854486587753481369786101314} a^{5} + \frac{47728162310136448698907757756449151294}{682533699640427243293876740684893050657} a^{4} - \frac{216385906860084656802057423838706763895}{682533699640427243293876740684893050657} a^{3} + \frac{1201794137676566326083576062997392260}{97504814234346749041982391526413292951} a^{2} + \frac{21697297562367103472121107827461341187}{105005184560065729737519498566906623178} a - \frac{86930380044048835635464922413296023}{462577905550950351266605720559060014}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 458351978.765 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1263 |
| Character table for t16n1263 is not computed |
Intermediate fields
| \(\Q(\sqrt{53}) \), 4.0.148877.1, 8.0.48695101400413.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{10}$ | R | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $53$ | 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |