Normalized defining polynomial
\( x^{16} - 8 x^{15} + 9 x^{14} - 29 x^{13} + 667 x^{12} - 1975 x^{11} + 1940 x^{10} - 6845 x^{9} + 26459 x^{8} - 30297 x^{7} - 365599 x^{6} - 1459696 x^{5} + 8653181 x^{4} - 3692254 x^{3} + 42347991 x^{2} + 13550329 x + 43741763 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1125664559289128829386632937086249=13^{8}\cdot 53^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $116.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{13} a^{13} + \frac{1}{13} a^{12} + \frac{1}{13} a^{11} + \frac{2}{13} a^{10} + \frac{5}{13} a^{9} - \frac{1}{13} a^{8} - \frac{3}{13} a^{6} + \frac{3}{13} a^{5} + \frac{6}{13} a^{4} + \frac{3}{13} a^{3} - \frac{1}{13} a^{2} - \frac{4}{13} a$, $\frac{1}{13} a^{14} + \frac{1}{13} a^{11} + \frac{3}{13} a^{10} - \frac{6}{13} a^{9} + \frac{1}{13} a^{8} - \frac{3}{13} a^{7} + \frac{6}{13} a^{6} + \frac{3}{13} a^{5} - \frac{3}{13} a^{4} - \frac{4}{13} a^{3} - \frac{3}{13} a^{2} + \frac{4}{13} a$, $\frac{1}{31556300454149836014696752814836349641375372988555728183} a^{15} - \frac{1067898556893437644526583327917905799366173000516271095}{31556300454149836014696752814836349641375372988555728183} a^{14} + \frac{242981271699112282192571356710634560905563053025879205}{31556300454149836014696752814836349641375372988555728183} a^{13} + \frac{800541828981763691894822943211386278906183168515292553}{31556300454149836014696752814836349641375372988555728183} a^{12} - \frac{7409160771699432745741810857204554845280344313864814731}{31556300454149836014696752814836349641375372988555728183} a^{11} - \frac{5635310974261652215974195457218286898002841421080235447}{31556300454149836014696752814836349641375372988555728183} a^{10} - \frac{3526363179784200555076621712538504655377035841391267519}{31556300454149836014696752814836349641375372988555728183} a^{9} + \frac{9825959848290574627609213395087442700909208510159271555}{31556300454149836014696752814836349641375372988555728183} a^{8} - \frac{7821695744372094632870719040219667481167682200805458934}{31556300454149836014696752814836349641375372988555728183} a^{7} + \frac{172306837510765724881637002880036172517648316558828516}{31556300454149836014696752814836349641375372988555728183} a^{6} - \frac{6228835778940313364774670881565950737041009876813264138}{31556300454149836014696752814836349641375372988555728183} a^{5} - \frac{1213329095851875687135414731544799805055015153537383187}{31556300454149836014696752814836349641375372988555728183} a^{4} + \frac{4653435213559717115146358489480598271815483200981684121}{31556300454149836014696752814836349641375372988555728183} a^{3} - \frac{13970493656190758075784289385754696696118707951029854360}{31556300454149836014696752814836349641375372988555728183} a^{2} - \frac{996017921472499404677047287781928377087547952292227865}{2427407727242295078053596370372026895490413306811979091} a + \frac{16398567226396347801717648563206616192021611766751927}{186723671326330390619507413105540530422339485139383007}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 354589050.14 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1263 |
| Character table for t16n1263 is not computed |
Intermediate fields
| \(\Q(\sqrt{53}) \), 4.0.148877.1, 8.0.288136694677.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $53$ | 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |