Normalized defining polynomial
\( x^{16} - 4 x^{15} + 14 x^{14} - 44 x^{13} + 93 x^{12} - 168 x^{11} + 252 x^{10} - 304 x^{9} + 329 x^{8} - 276 x^{7} + 246 x^{6} - 140 x^{5} + 95 x^{4} - 48 x^{3} + 24 x^{2} - 8 x + 2 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(112072358202091503616=2^{48}\cdot 631^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 631$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{4} a^{12} + \frac{1}{4} a^{4} - \frac{1}{2}$, $\frac{1}{16} a^{13} + \frac{1}{16} a^{12} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{16} a^{5} + \frac{1}{16} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{3}{8} a - \frac{3}{8}$, $\frac{1}{64} a^{14} - \frac{1}{32} a^{13} - \frac{3}{64} a^{12} - \frac{1}{8} a^{11} + \frac{1}{16} a^{10} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{31}{64} a^{6} - \frac{13}{32} a^{5} + \frac{5}{64} a^{4} - \frac{1}{4} a^{3} - \frac{1}{32} a^{2} - \frac{1}{16} a + \frac{5}{32}$, $\frac{1}{1671424} a^{15} + \frac{3347}{1671424} a^{14} + \frac{38163}{1671424} a^{13} - \frac{188695}{1671424} a^{12} + \frac{935}{417856} a^{11} - \frac{777}{417856} a^{10} + \frac{124}{6529} a^{9} + \frac{14901}{104464} a^{8} - \frac{8327}{1671424} a^{7} - \frac{325557}{1671424} a^{6} - \frac{650493}{1671424} a^{5} - \frac{474215}{1671424} a^{4} - \frac{359625}{835712} a^{3} - \frac{6695}{835712} a^{2} - \frac{393029}{835712} a - \frac{166999}{835712}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14485.3357952 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2304 |
| The 40 conjugacy class representatives for t16n1497 |
| Character table for t16n1497 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.0.1323302912.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.4.11.1 | $x^{4} + 12 x^{2} + 2$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.8.26.4 | $x^{8} + 8 x^{7} + 12 x^{6} + 8 x^{5} + 8 x^{4} + 8 x^{3} + 2$ | $8$ | $1$ | $26$ | $C_2^2:C_4$ | $[2, 3, 7/2, 4]$ | |
| 631 | Data not computed | ||||||