Normalized defining polynomial
\( x^{16} - x^{15} + 18 x^{14} - 18 x^{13} + 137 x^{12} - 137 x^{11} + 579 x^{10} - 579 x^{9} + 1514 x^{8} - 1514 x^{7} + 2636 x^{6} - 2636 x^{5} + 3350 x^{4} - 3350 x^{3} + 3554 x^{2} - 3554 x + 3571 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1118134004496021794140625=5^{8}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(85=5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{85}(1,·)$, $\chi_{85}(66,·)$, $\chi_{85}(74,·)$, $\chi_{85}(76,·)$, $\chi_{85}(14,·)$, $\chi_{85}(79,·)$, $\chi_{85}(16,·)$, $\chi_{85}(81,·)$, $\chi_{85}(21,·)$, $\chi_{85}(24,·)$, $\chi_{85}(26,·)$, $\chi_{85}(29,·)$, $\chi_{85}(36,·)$, $\chi_{85}(39,·)$, $\chi_{85}(44,·)$, $\chi_{85}(54,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{1597} a^{9} - \frac{610}{1597} a^{8} + \frac{9}{1597} a^{7} - \frac{89}{1597} a^{6} + \frac{27}{1597} a^{5} + \frac{576}{1597} a^{4} + \frac{30}{1597} a^{3} - \frac{178}{1597} a^{2} + \frac{9}{1597} a + \frac{377}{1597}$, $\frac{1}{1597} a^{10} + \frac{10}{1597} a^{8} + \frac{610}{1597} a^{7} + \frac{35}{1597} a^{6} - \frac{521}{1597} a^{5} + \frac{50}{1597} a^{4} + \frac{555}{1597} a^{3} + \frac{25}{1597} a^{2} - \frac{521}{1597} a + \frac{2}{1597}$, $\frac{1}{1597} a^{11} + \frac{322}{1597} a^{8} - \frac{55}{1597} a^{7} + \frac{369}{1597} a^{6} - \frac{220}{1597} a^{5} - \frac{414}{1597} a^{4} - \frac{275}{1597} a^{3} - \frac{338}{1597} a^{2} - \frac{88}{1597} a - \frac{576}{1597}$, $\frac{1}{1597} a^{12} - \frac{66}{1597} a^{8} + \frac{665}{1597} a^{7} - \frac{308}{1597} a^{6} + \frac{474}{1597} a^{5} - \frac{495}{1597} a^{4} - \frac{416}{1597} a^{3} - \frac{264}{1597} a^{2} - \frac{280}{1597} a - \frac{22}{1597}$, $\frac{1}{1597} a^{13} + \frac{330}{1597} a^{8} + \frac{286}{1597} a^{7} - \frac{609}{1597} a^{6} - \frac{310}{1597} a^{5} - \frac{728}{1597} a^{4} + \frac{119}{1597} a^{3} + \frac{748}{1597} a^{2} + \frac{572}{1597} a - \frac{670}{1597}$, $\frac{1}{1597} a^{14} + \frac{364}{1597} a^{8} - \frac{385}{1597} a^{7} + \frac{314}{1597} a^{6} - \frac{56}{1597} a^{5} + \frac{82}{1597} a^{4} + \frac{430}{1597} a^{3} + \frac{223}{1597} a^{2} - \frac{446}{1597} a + \frac{156}{1597}$, $\frac{1}{1597} a^{15} - \frac{328}{1597} a^{8} + \frac{232}{1597} a^{7} + \frac{400}{1597} a^{6} - \frac{164}{1597} a^{5} - \frac{27}{1597} a^{4} + \frac{482}{1597} a^{3} + \frac{466}{1597} a^{2} + \frac{74}{1597} a + \frac{114}{1597}$
Class group and class number
$C_{34}$, which has order $34$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.01221338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | R | $16$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||