Normalized defining polynomial
\( x^{16} - x^{15} - 4 x^{14} + 13 x^{13} - 13 x^{12} + 49 x^{11} + 132 x^{10} - 637 x^{9} + 381 x^{8} + 2548 x^{7} + 2112 x^{6} - 3136 x^{5} - 3328 x^{4} - 13312 x^{3} - 16384 x^{2} + 16384 x + 65536 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11173814592383056640625=3^{8}\cdot 5^{12}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(255=3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{255}(1,·)$, $\chi_{255}(67,·)$, $\chi_{255}(137,·)$, $\chi_{255}(203,·)$, $\chi_{255}(16,·)$, $\chi_{255}(86,·)$, $\chi_{255}(152,·)$, $\chi_{255}(154,·)$, $\chi_{255}(101,·)$, $\chi_{255}(103,·)$, $\chi_{255}(169,·)$, $\chi_{255}(239,·)$, $\chi_{255}(52,·)$, $\chi_{255}(118,·)$, $\chi_{255}(188,·)$, $\chi_{255}(254,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{464} a^{10} - \frac{1}{16} a^{9} - \frac{1}{2} a^{8} + \frac{1}{16} a^{7} + \frac{3}{16} a^{6} - \frac{51}{464} a^{5} - \frac{1}{2} a^{4} - \frac{1}{16} a^{3} - \frac{3}{16} a^{2} - \frac{1}{2} a - \frac{6}{29}$, $\frac{1}{1856} a^{11} - \frac{1}{1856} a^{10} - \frac{1}{16} a^{9} - \frac{31}{64} a^{8} + \frac{15}{64} a^{7} + \frac{65}{1856} a^{6} - \frac{67}{464} a^{5} - \frac{17}{64} a^{4} - \frac{31}{64} a^{3} - \frac{3}{16} a^{2} - \frac{35}{116} a - \frac{13}{29}$, $\frac{1}{37120} a^{12} - \frac{1}{7424} a^{11} + \frac{1}{1280} a^{9} + \frac{79}{256} a^{8} - \frac{799}{7424} a^{7} - \frac{1}{580} a^{6} - \frac{61}{256} a^{5} - \frac{31}{256} a^{4} + \frac{1}{5} a^{3} - \frac{181}{464} a^{2} - \frac{13}{116} a - \frac{1}{5}$, $\frac{1}{333337600} a^{13} + \frac{691}{333337600} a^{12} + \frac{2003}{8333440} a^{11} - \frac{83571}{333337600} a^{10} + \frac{484611}{11494400} a^{9} + \frac{7349657}{66667520} a^{8} + \frac{300577}{41667200} a^{7} - \frac{31071229}{333337600} a^{6} - \frac{11763643}{66667520} a^{5} - \frac{417823}{1436800} a^{4} - \frac{2359949}{5208400} a^{3} - \frac{40157}{520840} a^{2} + \frac{269351}{1302100} a + \frac{6199}{325525}$, $\frac{1}{1333350400} a^{14} - \frac{1}{1333350400} a^{13} - \frac{733}{333337600} a^{12} - \frac{30211}{1333350400} a^{11} + \frac{44851}{1333350400} a^{10} + \frac{73158017}{1333350400} a^{9} + \frac{108074349}{333337600} a^{8} + \frac{309809299}{1333350400} a^{7} + \frac{569216573}{1333350400} a^{6} - \frac{56562839}{333337600} a^{5} + \frac{9440161}{83334400} a^{4} + \frac{3961379}{10416800} a^{3} + \frac{190861}{5208400} a^{2} - \frac{198599}{1302100} a - \frac{104832}{325525}$, $\frac{1}{5333401600} a^{15} - \frac{1}{5333401600} a^{14} - \frac{1}{1333350400} a^{13} - \frac{18483}{5333401600} a^{12} + \frac{437811}{5333401600} a^{11} + \frac{3751729}{5333401600} a^{10} - \frac{35986863}{1333350400} a^{9} + \frac{1782429379}{5333401600} a^{8} + \frac{2062447421}{5333401600} a^{7} - \frac{570676547}{1333350400} a^{6} + \frac{10694327}{41667200} a^{5} + \frac{16746493}{41667200} a^{4} - \frac{536557}{1302100} a^{3} + \frac{979683}{2604200} a^{2} + \frac{312751}{1302100} a - \frac{120538}{325525}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{44541}{5333401600} a^{15} - \frac{44541}{1066680320} a^{14} - \frac{441}{20833600} a^{13} + \frac{44541}{183910400} a^{12} - \frac{579033}{1066680320} a^{11} + \frac{4498641}{5333401600} a^{10} - \frac{44541}{83334400} a^{9} - \frac{13251653}{1066680320} a^{8} + \frac{4498641}{183910400} a^{7} + \frac{44541}{5208400} a^{6} - \frac{4498641}{66667520} a^{5} - \frac{8061921}{83334400} a^{4} - \frac{3346749}{20833600} a^{3} + \frac{400869}{1302100} a + \frac{44541}{65105} \) (order $30$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 38248.3956886 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $17$ | 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |