Properties

Label 16.0.11171113175...5744.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{12}\cdot 3^{4}\cdot 13^{6}\cdot 17^{8}$
Root discriminant $23.88$
Ramified primes $2, 3, 13, 17$
Class number $2$
Class group $[2]$
Galois group $C_2^2.C_2^5.C_2$ (as 16T511)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![32, 80, -264, -184, 1196, -1796, 1982, -2106, 1919, -1408, 851, -436, 190, -66, 21, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 21*x^14 - 66*x^13 + 190*x^12 - 436*x^11 + 851*x^10 - 1408*x^9 + 1919*x^8 - 2106*x^7 + 1982*x^6 - 1796*x^5 + 1196*x^4 - 184*x^3 - 264*x^2 + 80*x + 32)
 
gp: K = bnfinit(x^16 - 4*x^15 + 21*x^14 - 66*x^13 + 190*x^12 - 436*x^11 + 851*x^10 - 1408*x^9 + 1919*x^8 - 2106*x^7 + 1982*x^6 - 1796*x^5 + 1196*x^4 - 184*x^3 - 264*x^2 + 80*x + 32, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 21 x^{14} - 66 x^{13} + 190 x^{12} - 436 x^{11} + 851 x^{10} - 1408 x^{9} + 1919 x^{8} - 2106 x^{7} + 1982 x^{6} - 1796 x^{5} + 1196 x^{4} - 184 x^{3} - 264 x^{2} + 80 x + 32 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(11171113175617115295744=2^{12}\cdot 3^{4}\cdot 13^{6}\cdot 17^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $23.88$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 13, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{4} a^{8} - \frac{1}{8} a^{6} - \frac{3}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{4} a^{9} - \frac{1}{8} a^{7} - \frac{3}{8} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{608} a^{14} - \frac{1}{19} a^{13} - \frac{29}{608} a^{12} + \frac{5}{304} a^{11} - \frac{1}{38} a^{10} - \frac{3}{76} a^{9} - \frac{61}{608} a^{8} - \frac{25}{152} a^{7} + \frac{105}{608} a^{6} - \frac{63}{304} a^{5} - \frac{47}{152} a^{4} - \frac{1}{4} a^{3} + \frac{73}{152} a^{2} - \frac{1}{4} a + \frac{9}{38}$, $\frac{1}{1346846425696} a^{15} + \frac{21939365}{35443326992} a^{14} - \frac{58783595045}{1346846425696} a^{13} + \frac{15281943797}{336711606424} a^{12} - \frac{468166837}{17721663496} a^{11} - \frac{1287010529}{84177901606} a^{10} + \frac{239707642459}{1346846425696} a^{9} + \frac{5757918905}{35443326992} a^{8} - \frac{188418074343}{1346846425696} a^{7} + \frac{6069002774}{42088950803} a^{6} - \frac{22787508189}{168355803212} a^{5} - \frac{43141119647}{168355803212} a^{4} - \frac{38380631373}{336711606424} a^{3} - \frac{2837274857}{42088950803} a^{2} + \frac{29863771673}{84177901606} a + \frac{3366353416}{42088950803}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 123243.684875 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2.C_2^5.C_2$ (as 16T511):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 46 conjugacy class representatives for $C_2^2.C_2^5.C_2$
Character table for $C_2^2.C_2^5.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), 4.4.30056.2, 4.0.3757.1, 4.0.2312.1, 8.0.105693486912.3, 8.0.1651460733.1, 8.0.903363136.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ R R ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.3.1$x^{2} + 14$$2$$1$$3$$C_2$$[3]$
2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.2.3.1$x^{2} + 14$$2$$1$$3$$C_2$$[3]$
2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.4.6.1$x^{4} - 6 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
$3$3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$13$13.4.3.3$x^{4} + 26$$4$$1$$3$$C_4$$[\ ]_{4}$
13.4.3.3$x^{4} + 26$$4$$1$$3$$C_4$$[\ ]_{4}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
$17$17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$