Normalized defining polynomial
\( x^{16} - 9 x^{14} + 65 x^{12} - 441 x^{10} + 2929 x^{8} - 7056 x^{6} + 16640 x^{4} - 36864 x^{2} + 65536 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(111612119056000000000000=2^{16}\cdot 5^{12}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(340=2^{2}\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{340}(1,·)$, $\chi_{340}(67,·)$, $\chi_{340}(69,·)$, $\chi_{340}(137,·)$, $\chi_{340}(203,·)$, $\chi_{340}(271,·)$, $\chi_{340}(273,·)$, $\chi_{340}(339,·)$, $\chi_{340}(33,·)$, $\chi_{340}(101,·)$, $\chi_{340}(103,·)$, $\chi_{340}(169,·)$, $\chi_{340}(171,·)$, $\chi_{340}(237,·)$, $\chi_{340}(239,·)$, $\chi_{340}(307,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{46864} a^{10} + \frac{7}{16} a^{8} + \frac{1}{16} a^{6} + \frac{7}{16} a^{4} + \frac{1}{16} a^{2} - \frac{441}{2929}$, $\frac{1}{187456} a^{11} + \frac{7}{64} a^{9} - \frac{15}{64} a^{7} + \frac{23}{64} a^{5} - \frac{31}{64} a^{3} + \frac{5417}{11716} a$, $\frac{1}{749824} a^{12} + \frac{7}{749824} a^{10} + \frac{65}{256} a^{8} + \frac{71}{256} a^{6} + \frac{113}{256} a^{4} + \frac{311}{5858} a^{2} - \frac{376}{2929}$, $\frac{1}{2999296} a^{13} + \frac{7}{2999296} a^{11} + \frac{65}{1024} a^{9} - \frac{441}{1024} a^{7} - \frac{143}{1024} a^{5} + \frac{311}{23432} a^{3} - \frac{94}{2929} a$, $\frac{1}{11997184} a^{14} + \frac{7}{11997184} a^{12} - \frac{79}{11997184} a^{10} + \frac{1607}{4096} a^{8} + \frac{881}{4096} a^{6} + \frac{311}{93728} a^{4} - \frac{47}{5858} a^{2} + \frac{56}{2929}$, $\frac{1}{47988736} a^{15} + \frac{7}{47988736} a^{13} - \frac{79}{47988736} a^{11} + \frac{1607}{16384} a^{9} + \frac{881}{16384} a^{7} + \frac{94039}{374912} a^{5} - \frac{5905}{23432} a^{3} + \frac{2985}{11716} a$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1629}{47988736} a^{15} + \frac{11765}{47988736} a^{13} - \frac{79821}{47988736} a^{11} + \frac{181}{16384} a^{9} - \frac{1165}{16384} a^{7} + \frac{11765}{187456} a^{5} - \frac{1629}{11716} a^{3} + \frac{724}{2929} a \) (order $20$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 114932.409132 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $17$ | 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |