Normalized defining polynomial
\( x^{16} - 2 x^{15} + 3 x^{14} + 67 x^{13} + 19 x^{12} - 142 x^{11} + 792 x^{10} + 1862 x^{9} + 7725 x^{8} + 6707 x^{7} - 17082 x^{6} + 2780 x^{5} + 54986 x^{4} + 52783 x^{3} + 32352 x^{2} - 2819 x + 11519 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11059281013440062648863435321=7^{12}\cdot 19^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{63} a^{12} + \frac{1}{9} a^{11} - \frac{1}{7} a^{10} + \frac{4}{63} a^{9} + \frac{5}{63} a^{8} - \frac{3}{7} a^{7} + \frac{10}{21} a^{6} + \frac{1}{21} a^{5} + \frac{5}{63} a^{4} - \frac{1}{9} a^{3} - \frac{10}{21} a^{2} - \frac{16}{63} a - \frac{20}{63}$, $\frac{1}{2457} a^{13} + \frac{1}{819} a^{12} + \frac{5}{2457} a^{11} + \frac{124}{2457} a^{10} - \frac{32}{2457} a^{9} + \frac{79}{2457} a^{8} - \frac{353}{819} a^{7} - \frac{20}{273} a^{6} + \frac{116}{351} a^{5} - \frac{73}{273} a^{4} + \frac{523}{2457} a^{3} + \frac{335}{2457} a^{2} - \frac{880}{2457} a + \frac{899}{2457}$, $\frac{1}{100737} a^{14} - \frac{5}{100737} a^{13} - \frac{643}{100737} a^{12} + \frac{49}{1599} a^{11} + \frac{16}{351} a^{10} + \frac{5210}{100737} a^{9} + \frac{14026}{100737} a^{8} + \frac{1828}{33579} a^{7} + \frac{40043}{100737} a^{6} - \frac{40966}{100737} a^{5} - \frac{21911}{100737} a^{4} - \frac{13750}{33579} a^{3} - \frac{9410}{100737} a^{2} + \frac{42493}{100737} a - \frac{8635}{100737}$, $\frac{1}{63564723414784127062751226093} a^{15} + \frac{59976605568264082931483}{21188241138261375687583742031} a^{14} - \frac{80862600839967491089855}{492749793913055248548459117} a^{13} + \frac{299965039994055332868143758}{63564723414784127062751226093} a^{12} - \frac{1129170468815621166914153936}{21188241138261375687583742031} a^{11} + \frac{10500063881467728683662817723}{63564723414784127062751226093} a^{10} + \frac{6043254496681019637764770552}{63564723414784127062751226093} a^{9} + \frac{6405592473091528713021705829}{63564723414784127062751226093} a^{8} + \frac{11249190254627149849999300364}{63564723414784127062751226093} a^{7} + \frac{8857635305328175265323303847}{21188241138261375687583742031} a^{6} + \frac{4448077493365414613008146169}{21188241138261375687583742031} a^{5} + \frac{18859591748160269839971702797}{63564723414784127062751226093} a^{4} - \frac{441193628334803554088300761}{1008963863726732175599225811} a^{3} - \frac{25428110143087945145021010923}{63564723414784127062751226093} a^{2} - \frac{31655369450725224470940484639}{63564723414784127062751226093} a - \frac{16191678071563129322326480807}{63564723414784127062751226093}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25363590.094 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{133}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-7}, \sqrt{-19})\), 4.2.336091.1 x2, 4.0.48013.1 x2, 8.0.112957160281.1, 8.2.105163116221611.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.8.6.1 | $x^{8} + 35 x^{4} + 441$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 7.8.6.1 | $x^{8} + 35 x^{4} + 441$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 19 | Data not computed | ||||||