Normalized defining polynomial
\( x^{16} - 2 x^{15} + 67 x^{14} - 114 x^{13} + 2237 x^{12} - 3254 x^{11} + 47186 x^{10} - 57752 x^{9} + 679239 x^{8} - 678478 x^{7} + 6785394 x^{6} - 5234808 x^{5} + 45778750 x^{4} - 24484700 x^{3} + 190527196 x^{2} - 53576192 x + 375033361 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1103480924139689928294400000000=2^{24}\cdot 5^{8}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $75.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(680=2^{3}\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{680}(1,·)$, $\chi_{680}(259,·)$, $\chi_{680}(321,·)$, $\chi_{680}(339,·)$, $\chi_{680}(81,·)$, $\chi_{680}(19,·)$, $\chi_{680}(659,·)$, $\chi_{680}(441,·)$, $\chi_{680}(281,·)$, $\chi_{680}(219,·)$, $\chi_{680}(161,·)$, $\chi_{680}(361,·)$, $\chi_{680}(579,·)$, $\chi_{680}(179,·)$, $\chi_{680}(121,·)$, $\chi_{680}(59,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{103} a^{14} + \frac{33}{103} a^{13} - \frac{47}{103} a^{12} + \frac{36}{103} a^{11} + \frac{1}{103} a^{10} + \frac{22}{103} a^{9} + \frac{28}{103} a^{8} - \frac{24}{103} a^{7} + \frac{44}{103} a^{6} + \frac{49}{103} a^{5} + \frac{17}{103} a^{4} - \frac{31}{103} a^{3} - \frac{10}{103} a^{2} - \frac{20}{103}$, $\frac{1}{104802596454418265300917979602895750720245271} a^{15} + \frac{390039155090566331206038192619229045365641}{104802596454418265300917979602895750720245271} a^{14} - \frac{21549293127124439061932342685666093275154406}{104802596454418265300917979602895750720245271} a^{13} + \frac{22995375481953264193714004056877776827205165}{104802596454418265300917979602895750720245271} a^{12} + \frac{15437312646446445842806452926761132489439861}{104802596454418265300917979602895750720245271} a^{11} - \frac{34414866474346166336906428128755871331931905}{104802596454418265300917979602895750720245271} a^{10} + \frac{34953051869070067461172707410102264233748701}{104802596454418265300917979602895750720245271} a^{9} - \frac{40608361284876245415276713664371919818465198}{104802596454418265300917979602895750720245271} a^{8} + \frac{34619225511803398510647772075311206013620008}{104802596454418265300917979602895750720245271} a^{7} + \frac{18269979957173556280016949594452668832485066}{104802596454418265300917979602895750720245271} a^{6} - \frac{6494151554292642532839062769708882577604940}{104802596454418265300917979602895750720245271} a^{5} - \frac{5642997423852110120542357178958462741117957}{104802596454418265300917979602895750720245271} a^{4} - \frac{32088062164191867927474257166169103878575604}{104802596454418265300917979602895750720245271} a^{3} - \frac{113481061731066046889066035924664380067950}{104802596454418265300917979602895750720245271} a^{2} - \frac{37679955864086160068689282034659619604122336}{104802596454418265300917979602895750720245271} a + \frac{34998864345646828626682687928207457548253178}{104802596454418265300917979602895750720245271}$
Class group and class number
$C_{16}\times C_{1968}$, which has order $31488$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.012213375973 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-170}) \), \(\Q(\sqrt{-10}, \sqrt{17})\), 4.4.4913.1, 4.0.7860800.1, 8.0.61792176640000.44, 8.0.1050467002880000.6, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||