Normalized defining polynomial
\( x^{16} - 5 x^{15} + 21 x^{14} - 64 x^{13} + 193 x^{12} - 630 x^{11} + 1539 x^{10} - 3879 x^{9} + 6842 x^{8} - 9035 x^{7} + 16285 x^{6} - 10912 x^{5} + 21963 x^{4} - 9330 x^{3} + 20571 x^{2} + 575 x + 13225 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11023665190835148548573041=11^{12}\cdot 37^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{9} + \frac{1}{8} a^{8} + \frac{3}{8} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{3}{8} a^{4} + \frac{3}{8} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2} a + \frac{3}{8}$, $\frac{1}{176} a^{12} + \frac{5}{176} a^{11} - \frac{5}{176} a^{10} - \frac{1}{22} a^{9} - \frac{5}{22} a^{8} - \frac{67}{176} a^{7} + \frac{13}{44} a^{6} + \frac{13}{176} a^{5} - \frac{39}{88} a^{4} + \frac{15}{88} a^{3} + \frac{67}{176} a^{2} - \frac{69}{176} a - \frac{13}{176}$, $\frac{1}{352} a^{13} + \frac{7}{176} a^{11} + \frac{17}{352} a^{10} - \frac{1}{8} a^{9} - \frac{175}{352} a^{8} + \frac{167}{352} a^{7} - \frac{159}{352} a^{6} - \frac{5}{32} a^{5} - \frac{19}{44} a^{4} + \frac{49}{352} a^{3} - \frac{3}{11} a^{2} - \frac{5}{88} a - \frac{155}{352}$, $\frac{1}{704} a^{14} - \frac{1}{704} a^{13} - \frac{1}{352} a^{12} + \frac{1}{64} a^{11} + \frac{19}{704} a^{10} - \frac{91}{704} a^{9} - \frac{169}{352} a^{8} + \frac{153}{352} a^{7} - \frac{25}{88} a^{6} - \frac{129}{704} a^{5} + \frac{305}{704} a^{4} - \frac{9}{704} a^{3} - \frac{7}{176} a^{2} - \frac{87}{704} a - \frac{7}{64}$, $\frac{1}{27839630250693840293714560} a^{15} - \frac{267689718213211303161}{1391981512534692014685728} a^{14} + \frac{207567842520906662021}{679015371968142446188160} a^{13} - \frac{52819105478062968382399}{27839630250693840293714560} a^{12} + \frac{55740336828130975405029}{13919815125346920146857280} a^{11} + \frac{3142490099984927743807}{63271886933395091576624} a^{10} - \frac{3432700232701977519340401}{27839630250693840293714560} a^{9} + \frac{2456616989896973350656989}{6959907562673460073428640} a^{8} + \frac{2493025791951202609923731}{13919815125346920146857280} a^{7} - \frac{608428677970550641223241}{5567926050138768058742912} a^{6} + \frac{4055885143625667236037}{347995378133673003671432} a^{5} + \frac{3460910262297208977144617}{6959907562673460073428640} a^{4} - \frac{9417409524327724265279877}{27839630250693840293714560} a^{3} - \frac{2421743358829037761236359}{5567926050138768058742912} a^{2} + \frac{57929857924261864277607}{316359434666975457883120} a + \frac{45389148829889302200209}{242083741310381219945344}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1185893.65744 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.SD_{16}$ (as 16T163):
| A solvable group of order 64 |
| The 19 conjugacy class representatives for $C_2^2.SD_{16}$ |
| Character table for $C_2^2.SD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 4.0.4477.1, 8.0.741610573.1, 8.0.89734879333.1, 8.0.3320190535321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 37 | Data not computed | ||||||