Normalized defining polynomial
\( x^{16} - 4 x^{14} + 161 x^{12} - 564 x^{10} - 13764 x^{8} + 317140 x^{6} + 4394510 x^{4} + 18361800 x^{2} + 25757525 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11020639142936576000000000000=2^{32}\cdot 5^{12}\cdot 101^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5555} a^{12} - \frac{1014}{5555} a^{10} + \frac{1171}{5555} a^{8} + \frac{1961}{5555} a^{6} + \frac{376}{5555} a^{4} + \frac{2}{11} a^{2} + \frac{1}{11}$, $\frac{1}{27775} a^{13} - \frac{6569}{27775} a^{11} - \frac{4384}{27775} a^{9} + \frac{7516}{27775} a^{7} - \frac{10734}{27775} a^{5} + \frac{24}{55} a^{3} + \frac{1}{55} a$, $\frac{1}{6870728404386874492025} a^{14} - \frac{401264196023915459}{6870728404386874492025} a^{12} - \frac{2406316721571159778449}{6870728404386874492025} a^{10} - \frac{1614540601072697854849}{6870728404386874492025} a^{8} + \frac{1690695531541203308601}{6870728404386874492025} a^{6} - \frac{6382407932272547059}{13605402780964107905} a^{4} - \frac{3111520908834236044}{13605402780964107905} a^{2} - \frac{2753632497912811}{26941391645473481}$, $\frac{1}{6870728404386874492025} a^{15} + \frac{93477723283870283}{6870728404386874492025} a^{13} + \frac{110404728625715470398}{624611673126079499275} a^{11} + \frac{3087239229068843944248}{6870728404386874492025} a^{9} - \frac{1461552607328353546552}{6870728404386874492025} a^{7} - \frac{16464825378817167598}{68027013904820539525} a^{5} - \frac{4843117626411486141}{13605402780964107905} a^{3} - \frac{8869727644932513}{134706958227367405} a$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{34729589236196}{9943167010690122275} a^{14} + \frac{286628080442664}{9943167010690122275} a^{12} - \frac{6757871836852196}{9943167010690122275} a^{10} + \frac{47490828620534204}{9943167010690122275} a^{8} + \frac{292715274730160604}{9943167010690122275} a^{6} - \frac{24555394376862891}{19689439625128955} a^{4} - \frac{196512854843273836}{19689439625128955} a^{2} - \frac{760809260663693}{38988989356691} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 46569140.1677 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 59 conjugacy class representatives for t16n1354 are not computed |
| Character table for t16n1354 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.404000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | R | $16$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101 | Data not computed | ||||||