Normalized defining polynomial
\( x^{16} - 8 x^{15} + 32 x^{14} - 60 x^{13} + 68 x^{12} - 112 x^{11} + 520 x^{10} - 936 x^{9} + 844 x^{8} - 144 x^{7} + 1216 x^{6} - 2120 x^{5} + 1808 x^{4} + 240 x^{3} + 32 x^{2} - 16 x + 4 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11017296355467800346624=2^{32}\cdot 3^{12}\cdot 13^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{12} a^{8} - \frac{1}{3} a^{7} + \frac{1}{6} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{12} a^{9} - \frac{1}{6} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{12} a^{10} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3}$, $\frac{1}{24} a^{11} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{12} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{24} a^{12} - \frac{1}{6} a^{7} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{12} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{24} a^{13} - \frac{1}{6} a^{6} + \frac{1}{4} a^{5} + \frac{1}{6} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{24} a^{14} - \frac{1}{6} a^{7} + \frac{1}{4} a^{6} + \frac{1}{6} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{10273215205808376} a^{15} + \frac{24663904195883}{1712202534301396} a^{14} - \frac{94358378682313}{10273215205808376} a^{13} + \frac{207547595926391}{10273215205808376} a^{12} - \frac{9742990896089}{856101267150698} a^{11} + \frac{23303724101444}{1284151900726047} a^{10} + \frac{8302822795801}{2568303801452094} a^{9} + \frac{3230429953171}{1712202534301396} a^{8} - \frac{420869486769105}{1712202534301396} a^{7} + \frac{305052224559715}{2568303801452094} a^{6} + \frac{604256810273039}{1712202534301396} a^{5} + \frac{2342819624512589}{5136607602904188} a^{4} - \frac{907720340830043}{2568303801452094} a^{3} - \frac{207753193827365}{856101267150698} a^{2} + \frac{113355608769506}{1284151900726047} a - \frac{210468807348967}{856101267150698}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{98882757533909}{2568303801452094} a^{15} - \frac{1048203028225725}{3424405068602792} a^{14} + \frac{4165001616787177}{3424405068602792} a^{13} - \frac{23054729560743431}{10273215205808376} a^{12} + \frac{8493244119347285}{3424405068602792} a^{11} - \frac{1764345406346374}{428050633575349} a^{10} + \frac{33755491868846491}{1712202534301396} a^{9} - \frac{59809481147603833}{1712202534301396} a^{8} + \frac{25974756460644233}{856101267150698} a^{7} - \frac{15173599142137127}{5136607602904188} a^{6} + \frac{77387200905746985}{1712202534301396} a^{5} - \frac{134811522304609551}{1712202534301396} a^{4} + \frac{110729275129265381}{1712202534301396} a^{3} + \frac{13046212477508207}{856101267150698} a^{2} - \frac{543242919793654}{428050633575349} a - \frac{1421497360318315}{2568303801452094} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 75200.3989622 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times SD_{16}$ (as 16T48):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_2\times SD_{16}$ |
| Character table for $C_2\times SD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), 4.4.7488.1, 4.0.7488.1, \(\Q(\zeta_{12})\), 8.8.104963309568.1, 8.0.104963309568.1, 8.0.56070144.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |