Normalized defining polynomial
\( x^{16} - 10 x^{14} - 32 x^{13} + 32 x^{12} + 420 x^{11} + 1436 x^{10} + 2964 x^{9} + 4402 x^{8} + 4824 x^{7} + 4072 x^{6} + 2312 x^{5} + 816 x^{4} + 104 x^{3} + 832 x^{2} + 1352 x + 676 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11017296355467800346624=2^{32}\cdot 3^{12}\cdot 13^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{78} a^{12} + \frac{1}{78} a^{11} - \frac{1}{13} a^{10} + \frac{17}{78} a^{9} - \frac{4}{39} a^{8} - \frac{3}{13} a^{7} + \frac{8}{39} a^{6} - \frac{2}{13} a^{5} + \frac{3}{13} a^{4} + \frac{11}{39} a^{3} - \frac{19}{39} a^{2} - \frac{1}{3}$, $\frac{1}{78} a^{13} - \frac{7}{78} a^{11} - \frac{8}{39} a^{10} + \frac{7}{39} a^{9} - \frac{5}{39} a^{8} + \frac{17}{39} a^{7} - \frac{14}{39} a^{6} + \frac{5}{13} a^{5} + \frac{2}{39} a^{4} + \frac{3}{13} a^{3} + \frac{19}{39} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{78} a^{14} - \frac{3}{26} a^{11} + \frac{11}{78} a^{10} - \frac{4}{39} a^{9} + \frac{17}{78} a^{8} + \frac{1}{39} a^{7} - \frac{7}{39} a^{6} - \frac{1}{39} a^{5} - \frac{2}{13} a^{4} + \frac{6}{13} a^{3} + \frac{10}{39} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{904639573744920858} a^{15} + \frac{114283752364093}{34793829759420033} a^{14} + \frac{42957778892261}{452319786872460429} a^{13} - \frac{1597214256846320}{452319786872460429} a^{12} + \frac{53237267956501167}{301546524581640286} a^{11} + \frac{195068949019474219}{904639573744920858} a^{10} + \frac{7175749448920651}{69587659518840066} a^{9} - \frac{4646344937131138}{34793829759420033} a^{8} + \frac{25048707385760009}{150773262290820143} a^{7} - \frac{124248690738636844}{452319786872460429} a^{6} - \frac{9733845110221070}{452319786872460429} a^{5} - \frac{77768309099883256}{452319786872460429} a^{4} + \frac{27458195767668074}{452319786872460429} a^{3} - \frac{152060810683207201}{452319786872460429} a^{2} + \frac{1013514886163192}{11597943253140011} a - \frac{1932273672247155}{11597943253140011}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{3872749921063}{1212653584108473} a^{15} + \frac{2241044372891}{1212653584108473} a^{14} + \frac{13345684332897}{404217861369491} a^{13} + \frac{32105477996022}{404217861369491} a^{12} - \frac{204233523192953}{1212653584108473} a^{11} - \frac{513630736092135}{404217861369491} a^{10} - \frac{1488962475216973}{404217861369491} a^{9} - \frac{16125339557646119}{2425307168216946} a^{8} - \frac{3518989162969142}{404217861369491} a^{7} - \frac{773595289925255}{93281044931421} a^{6} - \frac{7087419619409098}{1212653584108473} a^{5} - \frac{872829752695375}{404217861369491} a^{4} - \frac{156570579256640}{1212653584108473} a^{3} - \frac{178491231124942}{1212653584108473} a^{2} - \frac{52579971754152}{31093681643807} a - \frac{182007873403405}{93281044931421} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 142361.959547 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$SD_{16}:C_2$ (as 16T32):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $SD_{16}:C_2$ |
| Character table for $SD_{16}:C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), 4.0.7488.1, 4.4.7488.1, \(\Q(\zeta_{12})\), 8.0.56070144.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |