Normalized defining polynomial
\( x^{16} - 5 x^{15} + 32 x^{14} - 246 x^{13} + 753 x^{12} - 2262 x^{11} + 6443 x^{10} + 5749 x^{9} - 50991 x^{8} + 123309 x^{7} - 392006 x^{6} + 333125 x^{5} + 1091846 x^{4} - 1121147 x^{3} + 5869757 x^{2} - 5886424 x + 1545977 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1099568479361490150598987419689=11^{12}\cdot 89^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $75.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{44} a^{12} - \frac{2}{11} a^{11} + \frac{5}{22} a^{10} - \frac{2}{11} a^{9} - \frac{5}{22} a^{8} - \frac{2}{11} a^{7} - \frac{1}{44} a^{6} + \frac{5}{22} a^{5} - \frac{9}{44} a^{4} + \frac{7}{22} a^{3} - \frac{17}{44} a^{2} - \frac{3}{22} a - \frac{19}{44}$, $\frac{1}{44} a^{13} - \frac{5}{22} a^{11} + \frac{3}{22} a^{10} - \frac{2}{11} a^{9} + \frac{1}{44} a^{7} + \frac{1}{22} a^{6} - \frac{17}{44} a^{5} - \frac{7}{22} a^{4} - \frac{15}{44} a^{3} - \frac{5}{22} a^{2} + \frac{21}{44} a - \frac{5}{11}$, $\frac{1}{33044} a^{14} - \frac{67}{16522} a^{13} - \frac{20}{8261} a^{12} + \frac{645}{16522} a^{11} + \frac{3655}{16522} a^{10} - \frac{515}{16522} a^{9} + \frac{5101}{33044} a^{8} + \frac{1669}{8261} a^{7} + \frac{995}{33044} a^{6} - \frac{2986}{8261} a^{5} + \frac{4537}{33044} a^{4} + \frac{851}{16522} a^{3} + \frac{1759}{33044} a^{2} + \frac{7395}{16522} a - \frac{4008}{8261}$, $\frac{1}{23612285708646215024531395654186497088036} a^{15} - \frac{8355643307376671751967526885035783}{23612285708646215024531395654186497088036} a^{14} + \frac{17681651851916141628765161510697547133}{5903071427161553756132848913546624272009} a^{13} + \frac{210161009075586312250486042261858876379}{23612285708646215024531395654186497088036} a^{12} + \frac{424157096876831801750210202218805863229}{11806142854323107512265697827093248544018} a^{11} + \frac{1277863159269397476406990488198040124232}{5903071427161553756132848913546624272009} a^{10} + \frac{2219474078000112418604706365124809159239}{23612285708646215024531395654186497088036} a^{9} - \frac{646835796014495648661002952846514353477}{23612285708646215024531395654186497088036} a^{8} + \frac{601409955212057256458793305425476304527}{23612285708646215024531395654186497088036} a^{7} + \frac{10808267658138501909471204084415129786}{5903071427161553756132848913546624272009} a^{6} + \frac{3338771792077785844015225876774658345897}{23612285708646215024531395654186497088036} a^{5} + \frac{131354015098959414339603758889376859596}{536642857014686705102986264867874933819} a^{4} + \frac{72775822304847107416133304234522994313}{2146571428058746820411945059471499735276} a^{3} - \frac{995225224064743091029977978642087097025}{5903071427161553756132848913546624272009} a^{2} - \frac{2640463134121603561109166102772858173827}{5903071427161553756132848913546624272009} a - \frac{5079120310026959825384313872848136773571}{23612285708646215024531395654186497088036}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 124474223.474 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4.D_4:C_4$ (as 16T260):
| A solvable group of order 128 |
| The 32 conjugacy class representatives for $C_4.D_4:C_4$ |
| Character table for $C_4.D_4:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 4.0.10769.1, 8.0.10321451129.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | R | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $89$ | 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89.8.7.2 | $x^{8} - 801$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |