Normalized defining polynomial
\( x^{16} - 4x^{14} - 4x^{12} + 32x^{10} + 99x^{8} + 96x^{6} + 44x^{4} - 20x^{2} + 25 \)
Invariants
| Degree: | $16$ |
| |
| Signature: | $[0, 8]$ |
| |
| Discriminant: |
\(109951162777600000000\)
\(\medspace = 2^{48}\cdot 5^{8}\)
|
| |
| Root discriminant: | \(17.89\) |
| |
| Galois root discriminant: | $2^{3}5^{1/2}\approx 17.88854381999832$ | ||
| Ramified primes: |
\(2\), \(5\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $D_8$ |
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(i, \sqrt{5})\) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5}a^{10}+\frac{2}{5}a^{6}+\frac{1}{5}a^{2}$, $\frac{1}{5}a^{11}+\frac{2}{5}a^{7}+\frac{1}{5}a^{3}$, $\frac{1}{55}a^{12}+\frac{2}{55}a^{10}+\frac{2}{5}a^{8}-\frac{6}{55}a^{6}-\frac{14}{55}a^{4}+\frac{27}{55}a^{2}+\frac{2}{11}$, $\frac{1}{55}a^{13}+\frac{2}{55}a^{11}+\frac{2}{5}a^{9}-\frac{6}{55}a^{7}-\frac{14}{55}a^{5}+\frac{27}{55}a^{3}+\frac{2}{11}a$, $\frac{1}{487135}a^{14}-\frac{251}{97427}a^{12}-\frac{1948}{28655}a^{10}+\frac{6106}{97427}a^{8}+\frac{1128}{5731}a^{6}-\frac{27429}{97427}a^{4}+\frac{132347}{487135}a^{2}-\frac{12843}{97427}$, $\frac{1}{2435675}a^{15}-\frac{18969}{2435675}a^{13}-\frac{4032}{143275}a^{11}-\frac{846313}{2435675}a^{9}-\frac{45418}{143275}a^{7}+\frac{110851}{2435675}a^{5}+\frac{141204}{2435675}a^{3}+\frac{146583}{487135}a$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $7$ |
| |
| Torsion generator: |
\( \frac{12}{5731} a^{14} + \frac{49}{5731} a^{12} - \frac{390}{5731} a^{10} - \frac{424}{5731} a^{8} + \frac{5402}{5731} a^{6} + \frac{11040}{5731} a^{4} + \frac{7450}{5731} a^{2} - \frac{542}{5731} \)
(order $4$)
|
| |
| Fundamental units: |
$\frac{253}{44285}a^{14}-\frac{20721}{487135}a^{12}+\frac{361}{5731}a^{10}+\frac{9643}{44285}a^{8}-\frac{47}{28655}a^{6}-\frac{628681}{487135}a^{4}-\frac{714061}{487135}a^{2}-\frac{57216}{97427}$, $\frac{6696}{2435675}a^{15}-\frac{51329}{2435675}a^{13}+\frac{2553}{143275}a^{11}+\frac{416742}{2435675}a^{9}+\frac{1797}{143275}a^{7}-\frac{2526834}{2435675}a^{5}-\frac{5296966}{2435675}a^{3}-\frac{898672}{487135}a$, $\frac{14426}{2435675}a^{15}-\frac{98349}{2435675}a^{13}+\frac{6623}{143275}a^{11}+\frac{640302}{2435675}a^{9}-\frac{1028}{13025}a^{7}-\frac{1899079}{2435675}a^{5}-\frac{2271061}{2435675}a^{3}-\frac{2392}{487135}a$, $\frac{48002}{2435675}a^{15}+\frac{6119}{487135}a^{14}-\frac{183193}{2435675}a^{13}-\frac{35754}{487135}a^{12}-\frac{18614}{143275}a^{11}+\frac{147}{28655}a^{10}+\frac{1855239}{2435675}a^{9}+\frac{337792}{487135}a^{8}+\frac{321339}{143275}a^{7}+\frac{12103}{28655}a^{6}+\frac{2308347}{2435675}a^{5}-\frac{1158629}{487135}a^{4}-\frac{5723317}{2435675}a^{3}-\frac{1611619}{487135}a^{2}-\frac{1539319}{487135}a-\frac{166439}{97427}$, $\frac{19526}{2435675}a^{15}+\frac{4008}{487135}a^{14}-\frac{77524}{2435675}a^{13}-\frac{5167}{97427}a^{12}-\frac{3127}{143275}a^{11}+\frac{2206}{28655}a^{10}+\frac{460102}{2435675}a^{9}+\frac{18671}{97427}a^{8}+\frac{123742}{143275}a^{7}+\frac{1349}{5731}a^{6}+\frac{2792921}{2435675}a^{5}-\frac{20062}{97427}a^{4}+\frac{895189}{2435675}a^{3}+\frac{133901}{487135}a^{2}-\frac{48462}{487135}a+\frac{37568}{97427}$, $\frac{13479}{2435675}a^{15}-\frac{396}{44285}a^{14}+\frac{18439}{2435675}a^{13}+\frac{988}{44285}a^{12}-\frac{22658}{143275}a^{11}+\frac{328}{2605}a^{10}+\frac{274503}{2435675}a^{9}-\frac{17789}{44285}a^{8}+\frac{241068}{143275}a^{7}-\frac{712}{521}a^{6}+\frac{6583194}{2435675}a^{5}-\frac{37132}{44285}a^{4}+\frac{2753656}{2435675}a^{3}+\frac{24028}{44285}a^{2}-\frac{115873}{487135}a+\frac{1910}{8857}$, $\frac{22291}{2435675}a^{15}-\frac{2548}{487135}a^{14}-\frac{49084}{2435675}a^{13}+\frac{18077}{487135}a^{12}-\frac{20442}{143275}a^{11}-\frac{221}{5731}a^{10}+\frac{1088332}{2435675}a^{9}-\frac{141121}{487135}a^{8}+\frac{184727}{143275}a^{7}+\frac{7317}{28655}a^{6}+\frac{3286586}{2435675}a^{5}+\frac{355662}{487135}a^{4}-\frac{22296}{2435675}a^{3}+\frac{638966}{487135}a^{2}-\frac{308497}{487135}a-\frac{38079}{97427}$
|
| |
| Regulator: | \( 4648.44617215 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 4648.44617215 \cdot 1}{4\cdot\sqrt{109951162777600000000}}\cr\approx \mathstrut & 0.269207310065 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $D_{8}$ |
| Character table for $D_{8}$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-1}) \), \(\Q(i, \sqrt{5})\), 4.2.1600.1 x2, 4.0.1280.1 x2, 8.0.40960000.2, 8.2.2621440000.2 x4, 8.0.2097152000.4 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{8}$ | ${\href{/padicField/13.2.0.1}{2} }^{8}$ | ${\href{/padicField/17.2.0.1}{2} }^{8}$ | ${\href{/padicField/19.2.0.1}{2} }^{8}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.2.0.1}{2} }^{8}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{8}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.8.48c1.120 | $x^{16} + 8 x^{15} + 44 x^{14} + 168 x^{13} + 494 x^{12} + 1144 x^{11} + 2156 x^{10} + 3344 x^{9} + 4325 x^{8} + 4672 x^{7} + 4224 x^{6} + 3168 x^{5} + 1956 x^{4} + 968 x^{3} + 384 x^{2} + 112 x + 29$ | $8$ | $2$ | $48$ | $D_{8}$ | $$[2, 3, 4]^{2}$$ |
|
\(5\)
| 5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 5.2.2.2a1.2 | $x^{4} + 8 x^{3} + 20 x^{2} + 16 x + 9$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |