Properties

Label 16.0.109...000.6
Degree $16$
Signature $[0, 8]$
Discriminant $1.100\times 10^{20}$
Root discriminant \(17.89\)
Ramified primes $2,5$
Class number $1$
Class group trivial
Galois group $Q_8 : C_2$ (as 16T11)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^14 + 8*x^12 + 16*x^10 + 23*x^8 - 16*x^6 + 8*x^4 + 4*x^2 + 1)
 
gp: K = bnfinit(y^16 - 4*y^14 + 8*y^12 + 16*y^10 + 23*y^8 - 16*y^6 + 8*y^4 + 4*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - 4*x^14 + 8*x^12 + 16*x^10 + 23*x^8 - 16*x^6 + 8*x^4 + 4*x^2 + 1);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - 4*x^14 + 8*x^12 + 16*x^10 + 23*x^8 - 16*x^6 + 8*x^4 + 4*x^2 + 1)
 

\( x^{16} - 4x^{14} + 8x^{12} + 16x^{10} + 23x^{8} - 16x^{6} + 8x^{4} + 4x^{2} + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(109951162777600000000\) \(\medspace = 2^{48}\cdot 5^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(17.89\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3}5^{1/2}\approx 17.88854381999832$
Ramified primes:   \(2\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $16$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}+\frac{1}{3}$, $\frac{1}{3}a^{9}+\frac{1}{3}a$, $\frac{1}{3}a^{10}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{11}+\frac{1}{3}a^{3}$, $\frac{1}{27}a^{12}+\frac{1}{27}a^{10}-\frac{4}{27}a^{8}+\frac{2}{9}a^{6}+\frac{13}{27}a^{4}+\frac{1}{27}a^{2}+\frac{8}{27}$, $\frac{1}{27}a^{13}+\frac{1}{27}a^{11}-\frac{4}{27}a^{9}+\frac{2}{9}a^{7}+\frac{13}{27}a^{5}+\frac{1}{27}a^{3}+\frac{8}{27}a$, $\frac{1}{1107}a^{14}+\frac{5}{1107}a^{12}+\frac{5}{41}a^{10}-\frac{163}{1107}a^{8}+\frac{442}{1107}a^{6}+\frac{26}{1107}a^{4}+\frac{67}{369}a^{2}+\frac{419}{1107}$, $\frac{1}{1107}a^{15}+\frac{5}{1107}a^{13}+\frac{5}{41}a^{11}-\frac{163}{1107}a^{9}+\frac{442}{1107}a^{7}+\frac{26}{1107}a^{5}+\frac{67}{369}a^{3}+\frac{419}{1107}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{68}{369} a^{14} - \frac{907}{1107} a^{12} + \frac{1997}{1107} a^{10} + \frac{2500}{1107} a^{8} + \frac{370}{123} a^{6} - \frac{5356}{1107} a^{4} + \frac{2177}{1107} a^{2} - \frac{419}{1107} \)  (order $8$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{2}{123}a^{14}-\frac{115}{1107}a^{12}+\frac{380}{1107}a^{10}-\frac{269}{1107}a^{8}+\frac{28}{369}a^{6}+\frac{17}{1107}a^{4}+\frac{2675}{1107}a^{2}-\frac{2}{1107}$, $\frac{172}{1107}a^{15}-\frac{616}{1107}a^{13}+\frac{40}{41}a^{11}+\frac{3329}{1107}a^{9}+\frac{5176}{1107}a^{7}-\frac{1432}{1107}a^{5}-\frac{284}{369}a^{3}+\frac{1589}{1107}a$, $\frac{170}{1107}a^{15}-\frac{626}{1107}a^{13}+\frac{131}{123}a^{11}+\frac{2917}{1107}a^{9}+\frac{5399}{1107}a^{7}-\frac{1484}{1107}a^{5}-\frac{295}{369}a^{3}-\frac{1094}{1107}a$, $\frac{206}{1107}a^{15}+\frac{190}{1107}a^{14}-\frac{299}{369}a^{13}-\frac{731}{1107}a^{12}+\frac{1898}{1107}a^{11}+\frac{1460}{1107}a^{10}+\frac{2912}{1107}a^{9}+\frac{340}{123}a^{8}+\frac{3107}{1107}a^{7}+\frac{5260}{1107}a^{6}-\frac{1768}{369}a^{5}-\frac{1415}{1107}a^{4}+\frac{2210}{1107}a^{3}+\frac{2930}{1107}a^{2}+\frac{2264}{1107}a+\frac{160}{369}$, $\frac{688}{1107}a^{15}-\frac{172}{1107}a^{14}-\frac{2956}{1107}a^{13}+\frac{616}{1107}a^{12}+\frac{2137}{369}a^{11}-\frac{40}{41}a^{10}+\frac{9011}{1107}a^{9}-\frac{3329}{1107}a^{8}+\frac{13324}{1107}a^{7}-\frac{5176}{1107}a^{6}-\frac{14338}{1107}a^{5}+\frac{1432}{1107}a^{4}+\frac{3620}{369}a^{3}+\frac{284}{369}a^{2}+\frac{575}{1107}a-\frac{1589}{1107}$, $\frac{56}{369}a^{15}-\frac{2}{1107}a^{14}-\frac{677}{1107}a^{13}-\frac{17}{369}a^{12}+\frac{1237}{1107}a^{11}+\frac{58}{1107}a^{10}+\frac{3038}{1107}a^{9}+\frac{121}{1107}a^{8}+\frac{1054}{369}a^{7}-\frac{2237}{1107}a^{6}-\frac{5390}{1107}a^{5}-\frac{434}{123}a^{4}-\frac{4280}{1107}a^{3}-\frac{3395}{1107}a^{2}-\frac{415}{1107}a-\frac{428}{1107}$, $\frac{23}{123}a^{15}-\frac{44}{369}a^{14}-\frac{851}{1107}a^{13}+\frac{611}{1107}a^{12}+\frac{1705}{1107}a^{11}-\frac{1420}{1107}a^{10}+\frac{3323}{1107}a^{9}-\frac{1280}{1107}a^{8}+\frac{1265}{369}a^{7}-\frac{670}{369}a^{6}-\frac{3638}{1107}a^{5}+\frac{3128}{1107}a^{4}-\frac{131}{1107}a^{3}-\frac{169}{1107}a^{2}-\frac{679}{1107}a+\frac{247}{1107}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 9717.26549391 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 9717.26549391 \cdot 1}{8\cdot\sqrt{109951162777600000000}}\cr\approx \mathstrut & 0.281379928682 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^14 + 8*x^12 + 16*x^10 + 23*x^8 - 16*x^6 + 8*x^4 + 4*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - 4*x^14 + 8*x^12 + 16*x^10 + 23*x^8 - 16*x^6 + 8*x^4 + 4*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - 4*x^14 + 8*x^12 + 16*x^10 + 23*x^8 - 16*x^6 + 8*x^4 + 4*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - 4*x^14 + 8*x^12 + 16*x^10 + 23*x^8 - 16*x^6 + 8*x^4 + 4*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_4:C_2$ (as 16T11):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 16
The 10 conjugacy class representatives for $Q_8 : C_2$
Character table for $Q_8 : C_2$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), \(\Q(i, \sqrt{10})\), \(\Q(\zeta_{8})\), \(\Q(i, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{-2}, \sqrt{-5})\), \(\Q(\sqrt{2}, \sqrt{-5})\), \(\Q(\sqrt{-2}, \sqrt{5})\), 8.0.40960000.1, 8.0.419430400.2 x2, 8.4.2621440000.1 x2, 8.0.2621440000.2 x2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 8 siblings: 8.0.419430400.2, 8.4.2621440000.1, 8.0.2621440000.2
Minimal sibling: 8.0.419430400.2

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.4.0.1}{4} }^{4}$ R ${\href{/padicField/7.4.0.1}{4} }^{4}$ ${\href{/padicField/11.2.0.1}{2} }^{8}$ ${\href{/padicField/13.4.0.1}{4} }^{4}$ ${\href{/padicField/17.2.0.1}{2} }^{8}$ ${\href{/padicField/19.2.0.1}{2} }^{8}$ ${\href{/padicField/23.4.0.1}{4} }^{4}$ ${\href{/padicField/29.4.0.1}{4} }^{4}$ ${\href{/padicField/31.2.0.1}{2} }^{8}$ ${\href{/padicField/37.4.0.1}{4} }^{4}$ ${\href{/padicField/41.1.0.1}{1} }^{16}$ ${\href{/padicField/43.4.0.1}{4} }^{4}$ ${\href{/padicField/47.4.0.1}{4} }^{4}$ ${\href{/padicField/53.4.0.1}{4} }^{4}$ ${\href{/padicField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $16$$8$$2$$48$
\(5\) Copy content Toggle raw display 5.8.4.1$x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$