Normalized defining polynomial
\( x^{16} - 4x^{14} + 8x^{12} + 16x^{10} + 23x^{8} - 16x^{6} + 8x^{4} + 4x^{2} + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(109951162777600000000\) \(\medspace = 2^{48}\cdot 5^{8}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(17.89\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3}5^{1/2}\approx 17.88854381999832$ | ||
Ramified primes: | \(2\), \(5\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $16$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}+\frac{1}{3}$, $\frac{1}{3}a^{9}+\frac{1}{3}a$, $\frac{1}{3}a^{10}+\frac{1}{3}a^{2}$, $\frac{1}{3}a^{11}+\frac{1}{3}a^{3}$, $\frac{1}{27}a^{12}+\frac{1}{27}a^{10}-\frac{4}{27}a^{8}+\frac{2}{9}a^{6}+\frac{13}{27}a^{4}+\frac{1}{27}a^{2}+\frac{8}{27}$, $\frac{1}{27}a^{13}+\frac{1}{27}a^{11}-\frac{4}{27}a^{9}+\frac{2}{9}a^{7}+\frac{13}{27}a^{5}+\frac{1}{27}a^{3}+\frac{8}{27}a$, $\frac{1}{1107}a^{14}+\frac{5}{1107}a^{12}+\frac{5}{41}a^{10}-\frac{163}{1107}a^{8}+\frac{442}{1107}a^{6}+\frac{26}{1107}a^{4}+\frac{67}{369}a^{2}+\frac{419}{1107}$, $\frac{1}{1107}a^{15}+\frac{5}{1107}a^{13}+\frac{5}{41}a^{11}-\frac{163}{1107}a^{9}+\frac{442}{1107}a^{7}+\frac{26}{1107}a^{5}+\frac{67}{369}a^{3}+\frac{419}{1107}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( \frac{68}{369} a^{14} - \frac{907}{1107} a^{12} + \frac{1997}{1107} a^{10} + \frac{2500}{1107} a^{8} + \frac{370}{123} a^{6} - \frac{5356}{1107} a^{4} + \frac{2177}{1107} a^{2} - \frac{419}{1107} \) (order $8$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{2}{123}a^{14}-\frac{115}{1107}a^{12}+\frac{380}{1107}a^{10}-\frac{269}{1107}a^{8}+\frac{28}{369}a^{6}+\frac{17}{1107}a^{4}+\frac{2675}{1107}a^{2}-\frac{2}{1107}$, $\frac{172}{1107}a^{15}-\frac{616}{1107}a^{13}+\frac{40}{41}a^{11}+\frac{3329}{1107}a^{9}+\frac{5176}{1107}a^{7}-\frac{1432}{1107}a^{5}-\frac{284}{369}a^{3}+\frac{1589}{1107}a$, $\frac{170}{1107}a^{15}-\frac{626}{1107}a^{13}+\frac{131}{123}a^{11}+\frac{2917}{1107}a^{9}+\frac{5399}{1107}a^{7}-\frac{1484}{1107}a^{5}-\frac{295}{369}a^{3}-\frac{1094}{1107}a$, $\frac{206}{1107}a^{15}+\frac{190}{1107}a^{14}-\frac{299}{369}a^{13}-\frac{731}{1107}a^{12}+\frac{1898}{1107}a^{11}+\frac{1460}{1107}a^{10}+\frac{2912}{1107}a^{9}+\frac{340}{123}a^{8}+\frac{3107}{1107}a^{7}+\frac{5260}{1107}a^{6}-\frac{1768}{369}a^{5}-\frac{1415}{1107}a^{4}+\frac{2210}{1107}a^{3}+\frac{2930}{1107}a^{2}+\frac{2264}{1107}a+\frac{160}{369}$, $\frac{688}{1107}a^{15}-\frac{172}{1107}a^{14}-\frac{2956}{1107}a^{13}+\frac{616}{1107}a^{12}+\frac{2137}{369}a^{11}-\frac{40}{41}a^{10}+\frac{9011}{1107}a^{9}-\frac{3329}{1107}a^{8}+\frac{13324}{1107}a^{7}-\frac{5176}{1107}a^{6}-\frac{14338}{1107}a^{5}+\frac{1432}{1107}a^{4}+\frac{3620}{369}a^{3}+\frac{284}{369}a^{2}+\frac{575}{1107}a-\frac{1589}{1107}$, $\frac{56}{369}a^{15}-\frac{2}{1107}a^{14}-\frac{677}{1107}a^{13}-\frac{17}{369}a^{12}+\frac{1237}{1107}a^{11}+\frac{58}{1107}a^{10}+\frac{3038}{1107}a^{9}+\frac{121}{1107}a^{8}+\frac{1054}{369}a^{7}-\frac{2237}{1107}a^{6}-\frac{5390}{1107}a^{5}-\frac{434}{123}a^{4}-\frac{4280}{1107}a^{3}-\frac{3395}{1107}a^{2}-\frac{415}{1107}a-\frac{428}{1107}$, $\frac{23}{123}a^{15}-\frac{44}{369}a^{14}-\frac{851}{1107}a^{13}+\frac{611}{1107}a^{12}+\frac{1705}{1107}a^{11}-\frac{1420}{1107}a^{10}+\frac{3323}{1107}a^{9}-\frac{1280}{1107}a^{8}+\frac{1265}{369}a^{7}-\frac{670}{369}a^{6}-\frac{3638}{1107}a^{5}+\frac{3128}{1107}a^{4}-\frac{131}{1107}a^{3}-\frac{169}{1107}a^{2}-\frac{679}{1107}a+\frac{247}{1107}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 9717.26549391 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 9717.26549391 \cdot 1}{8\cdot\sqrt{109951162777600000000}}\cr\approx \mathstrut & 0.281379928682 \end{aligned}\]
Galois group
A solvable group of order 16 |
The 10 conjugacy class representatives for $Q_8 : C_2$ |
Character table for $Q_8 : C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 8 siblings: | 8.0.419430400.2, 8.4.2621440000.1, 8.0.2621440000.2 |
Minimal sibling: | 8.0.419430400.2 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{4}$ | ${\href{/padicField/11.2.0.1}{2} }^{8}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}$ | ${\href{/padicField/17.2.0.1}{2} }^{8}$ | ${\href{/padicField/19.2.0.1}{2} }^{8}$ | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.4.0.1}{4} }^{4}$ | ${\href{/padicField/41.1.0.1}{1} }^{16}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | Deg $16$ | $8$ | $2$ | $48$ | |||
\(5\) | 5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |