Normalized defining polynomial
\( x^{16} - 8 x^{15} + 108 x^{14} - 616 x^{13} + 4918 x^{12} - 21864 x^{11} + 129180 x^{10} - 459208 x^{9} + 2169449 x^{8} - 6139600 x^{7} + 23985408 x^{6} - 52180400 x^{5} + 170908336 x^{4} - 261201616 x^{3} + 718504936 x^{2} - 595699024 x + 1365814462 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(109810177778809754855611190738944=2^{62}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $100.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1504=2^{5}\cdot 47\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1504}(1,·)$, $\chi_{1504}(1221,·)$, $\chi_{1504}(1409,·)$, $\chi_{1504}(1033,·)$, $\chi_{1504}(845,·)$, $\chi_{1504}(657,·)$, $\chi_{1504}(469,·)$, $\chi_{1504}(281,·)$, $\chi_{1504}(93,·)$, $\chi_{1504}(1317,·)$, $\chi_{1504}(1129,·)$, $\chi_{1504}(941,·)$, $\chi_{1504}(753,·)$, $\chi_{1504}(565,·)$, $\chi_{1504}(377,·)$, $\chi_{1504}(189,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{298899191120051914369} a^{14} - \frac{7}{298899191120051914369} a^{13} + \frac{56279077350892773498}{298899191120051914369} a^{12} - \frac{38775272985304726528}{298899191120051914369} a^{11} - \frac{24768429471381685692}{298899191120051914369} a^{10} - \frac{68699700664560088210}{298899191120051914369} a^{9} + \frac{48527802397041457420}{298899191120051914369} a^{8} + \frac{90458182680894622427}{298899191120051914369} a^{7} - \frac{68872497857907545557}{298899191120051914369} a^{6} + \frac{87782952461801462076}{298899191120051914369} a^{5} - \frac{52280449931772938155}{298899191120051914369} a^{4} + \frac{137375521024890636867}{298899191120051914369} a^{3} + \frac{42197612724209288743}{298899191120051914369} a^{2} + \frac{89674393391248657486}{298899191120051914369} a - \frac{104589981486423370601}{298899191120051914369}$, $\frac{1}{2677400563727936464881149153} a^{15} + \frac{4478761}{2677400563727936464881149153} a^{14} - \frac{809679294469488798467245277}{2677400563727936464881149153} a^{13} - \frac{1178525036419921971549085222}{2677400563727936464881149153} a^{12} - \frac{963696987925757407593578749}{2677400563727936464881149153} a^{11} + \frac{559533141062873375676343769}{2677400563727936464881149153} a^{10} + \frac{1284711011031806756389726828}{2677400563727936464881149153} a^{9} - \frac{106060479057227475663604585}{2677400563727936464881149153} a^{8} - \frac{1106854540397301901745020}{2229309378624426698485553} a^{7} - \frac{1185776318023177176398370205}{2677400563727936464881149153} a^{6} - \frac{342055468013031057027568585}{2677400563727936464881149153} a^{5} - \frac{264069286642094029996978121}{2677400563727936464881149153} a^{4} - \frac{1052244807221557191095468217}{2677400563727936464881149153} a^{3} + \frac{169277119876122794546043763}{2677400563727936464881149153} a^{2} + \frac{66138475458039090730347453}{2677400563727936464881149153} a + \frac{768755520319341934868204258}{2677400563727936464881149153}$
Class group and class number
$C_{8}\times C_{8}\times C_{4520}$, which has order $289280$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.94986242651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-47}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-94}) \), \(\Q(\sqrt{2}, \sqrt{-47})\), \(\Q(\zeta_{16})^+\), 4.0.4524032.5, 8.0.20466865537024.21, \(\Q(\zeta_{32})^+\), 8.0.10479035154956288.53 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.6 | $x^{8} + 16 x^{7} + 28 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ |
| 2.8.31.6 | $x^{8} + 16 x^{7} + 28 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ | |
| $47$ | 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |