Normalized defining polynomial
\( x^{16} - 8 x^{14} - 22 x^{13} + 109 x^{12} + 94 x^{11} - 280 x^{10} - 1534 x^{9} + 2853 x^{8} + 3176 x^{7} + 772 x^{6} - 34112 x^{5} + 33676 x^{4} + 34840 x^{3} + 49752 x^{2} - 222632 x + 175876 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(109313267978738073600000000=2^{24}\cdot 3^{10}\cdot 5^{8}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{16} a^{12} + \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{16} a^{8} - \frac{3}{8} a^{7} - \frac{3}{8} a^{6} - \frac{1}{8} a^{5} - \frac{5}{16} a^{4} - \frac{1}{8} a^{2} + \frac{1}{8}$, $\frac{1}{176} a^{13} + \frac{1}{88} a^{12} + \frac{13}{88} a^{11} + \frac{21}{88} a^{10} + \frac{19}{176} a^{9} - \frac{2}{11} a^{8} - \frac{37}{88} a^{7} + \frac{5}{88} a^{6} + \frac{5}{16} a^{5} + \frac{27}{88} a^{4} - \frac{9}{88} a^{3} + \frac{19}{44} a^{2} + \frac{25}{88} a + \frac{17}{44}$, $\frac{1}{12144} a^{14} - \frac{1}{12144} a^{13} - \frac{1}{6072} a^{12} + \frac{563}{3036} a^{11} + \frac{2401}{12144} a^{10} + \frac{1363}{12144} a^{9} + \frac{21}{92} a^{8} - \frac{701}{3036} a^{7} + \frac{1301}{12144} a^{6} + \frac{1517}{12144} a^{5} - \frac{305}{2024} a^{4} - \frac{1343}{6072} a^{3} + \frac{2221}{6072} a^{2} + \frac{45}{2024} a + \frac{233}{1518}$, $\frac{1}{2170200490312038378055270992} a^{15} - \frac{83047370494713492544373}{2170200490312038378055270992} a^{14} - \frac{5854941223572759401365765}{2170200490312038378055270992} a^{13} + \frac{6105245961678616584843223}{2170200490312038378055270992} a^{12} - \frac{28942778448355782018231541}{2170200490312038378055270992} a^{11} - \frac{29897139073752736859160973}{241133387812448708672807888} a^{10} + \frac{293226219414624144069101849}{2170200490312038378055270992} a^{9} + \frac{63616994346392486366962915}{2170200490312038378055270992} a^{8} + \frac{26703587222652425774960087}{197290953664730761641388272} a^{7} - \frac{81025015755897654047757299}{241133387812448708672807888} a^{6} + \frac{1003266063473610929902499611}{2170200490312038378055270992} a^{5} + \frac{112582253644036917500301299}{2170200490312038378055270992} a^{4} + \frac{5372927090208977835208732}{15070836738278044292050493} a^{3} - \frac{31805001489488848876302500}{135637530644502398628454437} a^{2} - \frac{239575982403422739127712407}{1085100245156019189027635496} a + \frac{16414603066604767622056589}{47178271528522573435984152}$
Class group and class number
$C_{2}\times C_{2}\times C_{18}$, which has order $72$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 63425.6271299 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_2^2$ (as 16T127):
| A solvable group of order 64 |
| The 16 conjugacy class representatives for $C_2\wr C_2^2$ |
| Character table for $C_2\wr C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.8.16.4 | $x^{8} + 6 x^{6} + 6 x^{4} + 8 x^{3} + 4 x^{2} + 8 x + 20$ | $4$ | $2$ | $16$ | $D_4$ | $[2, 3]^{2}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.8.6.2 | $x^{8} - 49 x^{4} + 3969$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |