Normalized defining polynomial
\( x^{16} - 8 x^{15} + 20 x^{14} - 264 x^{13} + 7974 x^{12} - 44160 x^{11} + 80044 x^{10} - 1036800 x^{9} + 12590434 x^{8} - 12843008 x^{7} + 315562164 x^{6} + 738308640 x^{5} + 5621801606 x^{4} - 13121006632 x^{3} + 44818888652 x^{2} + 17297644568 x + 272446237993 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10922431682739176997092820825145344=2^{42}\cdot 3^{8}\cdot 17^{6}\cdot 97^{2}\cdot 1291^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $134.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 97, 1291$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{10} - \frac{1}{8} a^{8} - \frac{3}{8} a^{4} - \frac{1}{4} a^{2} + \frac{3}{8}$, $\frac{1}{8} a^{13} - \frac{1}{4} a^{11} - \frac{1}{8} a^{9} - \frac{3}{8} a^{5} - \frac{1}{4} a^{3} + \frac{3}{8} a$, $\frac{1}{1267208} a^{14} - \frac{61}{158401} a^{13} + \frac{15289}{633604} a^{12} - \frac{22978}{158401} a^{11} - \frac{163541}{1267208} a^{10} - \frac{8145}{316802} a^{9} + \frac{116}{1633} a^{8} - \frac{37617}{158401} a^{7} - \frac{292443}{1267208} a^{6} - \frac{7873}{158401} a^{5} + \frac{54893}{633604} a^{4} - \frac{56859}{158401} a^{3} + \frac{90815}{1267208} a^{2} - \frac{86831}{316802} a + \frac{11415}{158401}$, $\frac{1}{12014446930315861447712351034315219981298012408683164766786016459303169782385776} a^{15} - \frac{4504977468261442114266744905193054419203601902063425642234118121639435911}{12014446930315861447712351034315219981298012408683164766786016459303169782385776} a^{14} - \frac{662908832525164328182399401004171548600883191116222535743611742148700466324637}{12014446930315861447712351034315219981298012408683164766786016459303169782385776} a^{13} + \frac{662445917393923494327144867015085115688199645608939627803665674505012132115159}{12014446930315861447712351034315219981298012408683164766786016459303169782385776} a^{12} - \frac{794603716749022886311274452214156373872904872635426437513398761254906664478899}{12014446930315861447712351034315219981298012408683164766786016459303169782385776} a^{11} - \frac{2826928141807863601047779909468477240388436273441133827591990350995584606518187}{12014446930315861447712351034315219981298012408683164766786016459303169782385776} a^{10} + \frac{66760933806361769449677829260546331492645968319660047863114958967711814087123}{293035290983313693846642708154029755641414936797150360165512596568369994692336} a^{9} + \frac{2806047443976531810982066674670560704146162212050818651875596682930709536391703}{12014446930315861447712351034315219981298012408683164766786016459303169782385776} a^{8} - \frac{2465241285844100687934570278032590908201417804922519242519233264458273462380163}{12014446930315861447712351034315219981298012408683164766786016459303169782385776} a^{7} + \frac{1881607038299130669207000159933890930577264861612850356696134817253756710647965}{12014446930315861447712351034315219981298012408683164766786016459303169782385776} a^{6} - \frac{2089063242131666152258597386628369977013032401385321910434203562669826827756257}{12014446930315861447712351034315219981298012408683164766786016459303169782385776} a^{5} + \frac{11719621388443808606388282233277667313360241727975195388914278892400874087779}{293035290983313693846642708154029755641414936797150360165512596568369994692336} a^{4} - \frac{5354636852267469413054584831657242130595203284137825443473302132994962750517439}{12014446930315861447712351034315219981298012408683164766786016459303169782385776} a^{3} - \frac{5039208396793249358802329608923206290851128855857004532575575754280696377092783}{12014446930315861447712351034315219981298012408683164766786016459303169782385776} a^{2} - \frac{72510137509150875112775494723253926850768178280637046852356096187347590193209}{293035290983313693846642708154029755641414936797150360165512596568369994692336} a - \frac{1995695832563368748602812800075849420550044860024918768494273717918912352132509}{12014446930315861447712351034315219981298012408683164766786016459303169782385776}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4673299084.02 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 61 conjugacy class representatives for t16n1228 are not computed |
| Character table for t16n1228 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{2}, \sqrt{3})\), 4.0.1088.2, 4.0.39168.3, 8.0.1534132224.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.99 | $x^{8} + 4 x^{7} + 4 x^{6} + 6 x^{4} + 12 x^{2} + 14$ | $8$ | $1$ | $22$ | $D_4\times C_2$ | $[2, 3, 7/2]^{2}$ |
| 2.8.20.58 | $x^{8} + 8 x^{6} + 64 x + 16$ | $8$ | $1$ | $20$ | $Q_8:C_2$ | $[2, 3, 3]^{2}$ | |
| 3 | Data not computed | ||||||
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.2.2 | $x^{4} - 17 x^{2} + 867$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $97$ | $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 1291 | Data not computed | ||||||