Normalized defining polynomial
\( x^{16} - 6 x^{15} + 144 x^{14} - 698 x^{13} + 9259 x^{12} - 36670 x^{11} + 348512 x^{10} - 1121047 x^{9} + 8415948 x^{8} - 21472404 x^{7} + 133700199 x^{6} - 257288560 x^{5} + 1366555346 x^{4} - 1785014155 x^{3} + 8231592580 x^{2} - 5534375147 x + 22435022501 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(108730576084219434179495230711969=17^{14}\cdot 71^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $100.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1207=17\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1207}(1,·)$, $\chi_{1207}(70,·)$, $\chi_{1207}(72,·)$, $\chi_{1207}(780,·)$, $\chi_{1207}(851,·)$, $\chi_{1207}(212,·)$, $\chi_{1207}(922,·)$, $\chi_{1207}(285,·)$, $\chi_{1207}(995,·)$, $\chi_{1207}(356,·)$, $\chi_{1207}(427,·)$, $\chi_{1207}(1135,·)$, $\chi_{1207}(1137,·)$, $\chi_{1207}(1206,·)$, $\chi_{1207}(569,·)$, $\chi_{1207}(638,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{26} a^{14} + \frac{3}{13} a^{12} + \frac{1}{26} a^{11} + \frac{4}{13} a^{9} - \frac{9}{26} a^{8} - \frac{3}{13} a^{7} - \frac{4}{13} a^{6} - \frac{5}{26} a^{5} + \frac{2}{13} a^{4} - \frac{5}{13} a^{3} - \frac{1}{26} a^{2} - \frac{3}{13} a - \frac{6}{13}$, $\frac{1}{321139586772639059881889258816317852019051718896566} a^{15} - \frac{5265659917951069698655263688813970908871571856335}{321139586772639059881889258816317852019051718896566} a^{14} + \frac{46517503818797734285599045208932432172453780778439}{321139586772639059881889258816317852019051718896566} a^{13} + \frac{70687807120625351989378609822072780540890220448007}{321139586772639059881889258816317852019051718896566} a^{12} + \frac{611352725820979683084674518358171491162112356767}{3179599869036030295860289691250671802168828899966} a^{11} - \frac{124719334774297514485499881442855463604080016309469}{321139586772639059881889258816317852019051718896566} a^{10} + \frac{144315443496596655349600823907615544806620184128597}{321139586772639059881889258816317852019051718896566} a^{9} + \frac{84571927098409897609216065469992540094364475641357}{321139586772639059881889258816317852019051718896566} a^{8} - \frac{84394829116743026114112555827597836954567364849335}{321139586772639059881889258816317852019051718896566} a^{7} + \frac{19951829912975957226946278871646859001048618649215}{321139586772639059881889258816317852019051718896566} a^{6} + \frac{9208426893138936107243927794066949824678032036797}{321139586772639059881889258816317852019051718896566} a^{5} - \frac{138994652090436472715197085698765796921963381656795}{321139586772639059881889258816317852019051718896566} a^{4} - \frac{57590261911851162224134937960803934943909807968955}{321139586772639059881889258816317852019051718896566} a^{3} - \frac{51305370300454553337438559171149627818687216566007}{321139586772639059881889258816317852019051718896566} a^{2} - \frac{28666756133199335957890473950352219817380397605219}{321139586772639059881889258816317852019051718896566} a + \frac{33177975361835755749237587780526688725209989505}{67437964462964943276331217727072207479851263943}$
Class group and class number
$C_{21}\times C_{21}\times C_{1071}$, which has order $472311$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.01221338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1207}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-71}) \), \(\Q(\sqrt{17}, \sqrt{-71})\), 4.4.4913.1, 4.0.24766433.1, 8.0.613376203543489.1, 8.0.10427395460239313.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 71 | Data not computed | ||||||